Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Higher-Order Multiscale Method for the Wave Equation (2312.14102v2)

Published 21 Dec 2023 in math.NA and cs.NA

Abstract: In this paper we propose a multiscale method for the acoustic wave equation in highly oscillatory media. We use a higher-order extension of the localized orthogonal decomposition method combined with a higher-order time stepping scheme and present rigorous a-priori error estimates in the energy-induced norm. We find that in the very general setting without additional assumptions on the coefficient beyond boundedness, arbitrary orders of convergence cannot be expected but that increasing the polynomial degree may still considerably reduce the size of the error. Under additional regularity assumptions, higher orders can be obtained as well. Numerical examples are presented that confirm the theoretical results.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. The heterogeneous multiscale method. Acta Numer., 21:1–87, 2012.
  2. A. Abdulle and M. J. Grote. Finite element heterogeneous multiscale method for the wave equation. Multiscale Model. Simul., 9(2):766–792, 2011.
  3. A. Abdulle and P. Henning. Localized orthogonal decomposition method for the wave equation with a continuum of scales. Math. Comp., 86(304):549–587, 2017.
  4. Numerical homogenization beyond scale separation. Acta Numer., 30:1–86, 2021.
  5. M. Almquist and M. Mehlin. Multilevel local time-stepping methods of Runge-Kutta-type for wave equations. SIAM J. Sci. Comput., 39(5):A2020–A2048, 2017.
  6. S. H. Christiansen. Foundations of finite element methods for wave equations of Maxwell type. In Applied wave mathematics, pages 335–393. Springer, Berlin, Heidelberg, 2009.
  7. P. G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
  8. An improved high-order method for elliptic multiscale problems. SIAM J. Numer. Anal., 61(4):1918–1937, 2023.
  9. W. E and B. Engquist. The heterogeneous multiscale methods. Commun. Math. Sci., 1(1):87–132, 2003.
  10. W. E and B. Engquist. The heterogeneous multi-scale method for homogenization problems. In Multiscale methods in science and engineering, volume 44 of Lect. Notes Comput. Sci. Eng., pages 89–110. Springer, Berlin, Heidelberg, 2005.
  11. Multi-scale methods for wave propagation in heterogeneous media. Commun. Math. Sci., 9(1):33–56, 2011.
  12. L. C. Evans. Partial Differential Equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  13. E. H. Georgoulis. Discontinuous Galerkin methods on shape-regular and anisotropic meshes. PhD thesis, University of Oxford, 2003.
  14. Multiscale methods for solving wave equations on spatial networks. Comput. Methods Appl. Mech. Engrg., 410:Paper No. 116008, 24, 2023.
  15. S. Geevers and R. Maier. Fast mass lumped multiscale wave propagation modelling. IMA J. Numer. Anal., 43(1):44–72, 2023.
  16. Runge-Kutta-based explicit local time-stepping methods for wave propagation. SIAM J. Sci. Comput., 37(2):A747–A775, 2015.
  17. The variational multiscale method – a paradigm for computational mechanics. Comput. Methods Appl. Mech. Engrg., 166(1-2):3–24, 1998.
  18. P. Henning and D. Peterseim. Oversampling for the multiscale finite element method. Multiscale Model. Simul., 11(4):1149–1175, 2013.
  19. M. Hauck and D. Peterseim. Multi-resolution localized orthogonal decomposition for Helmholtz problems. Multiscale Model. Simul., 20(2):657–684, 2022.
  20. Discontinuous h⁢pℎ𝑝hpitalic_h italic_p-finite element methods for advection-diffusion-reaction problems. SIAM J. Numer. Anal., 39(6):2133–2163, 2002.
  21. T. J. R. Hughes. Multiscale phenomena: Green’s functions, the Dirichlet-to-Neumann formulation, subgrid scale models, bubbles and the origins of stabilized methods. Comput. Methods Appl. Mech. Engrg., 127(1-4):387–401, 1995.
  22. L. Jiang and Y. Efendiev. A priori estimates for two multiscale finite element methods using multiple global fields to wave equations. Numer. Methods Partial Differential Equations, 28(6):1869–1892, 2012.
  23. Analysis of global multiscale finite element methods for wave equations with continuum spatial scales. Appl. Numer. Math., 60(8):862–876, 2010.
  24. P. Joly. Variational methods for time-dependent wave propagation problems. In Topics in computational wave propagation, volume 31 of Lect. Notes Comput. Sci. Eng., pages 201–264. Springer, Berlin, Heidelberg, 2003.
  25. S. Karaa. Finite element θ𝜃\thetaitalic_θ-schemes for the acoustic wave equation. Adv. Appl. Math. Mech., 3:181–203, 04 2011.
  26. S. Kim and H. Lim. High-order schemes for acoustic waveform simulation. Appl. Numer. Math., 57(4):402–414, 2007.
  27. O. Korostyshevskaya and S. E. Minkoff. A matrix analysis of operator-based upscaling for the wave equation. SIAM J. Numer. Anal., 44(2):586–612, 2006.
  28. Numerical methods for viscous and nonviscous wave equations. Appl. Numer. Math., 57(2):194–212, 2007.
  29. J.-L. Lions and E. Magenes. Non-homogeneous boundary value problems and applications. Vol. I, volume Band 181 of Die Grundlehren der mathematischen Wissenschaften. Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth.
  30. A generalized finite element method for the strongly damped wave equation with rapidly varying data. ESAIM Math. Model. Numer. Anal., 55(4):1375–1403, 2021.
  31. R. Maier. Computational Multiscale Methods in Unstructured Heterogeneous Media. PhD thesis, University of Augsburg, 2020.
  32. R. Maier. A high-order approach to elliptic multiscale problems with general unstructured coefficients. SIAM J. Numer. Anal., 59(2):1067–1089, 2021.
  33. A. Målqvist and D. Peterseim. Localization of elliptic multiscale problems. Math. Comp., 83(290):2583–2603, 2014.
  34. R. Maier and D. Peterseim. Explicit computational wave propagation in micro-heterogeneous media. BIT Numer. Math., 59(2):443–462, 2019.
  35. A. Målqvist and D. Peterseim. Numerical homogenization by localized orthogonal decomposition, volume 5 of SIAM Spotlights. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2020.
  36. B. Maier and B. Verfürth. Numerical upscaling for wave equations with time-dependent multiscale coefficients. Multiscale Model. Simul., 20(4):1169–1190, 2022.
  37. N. M. Newmark. A method of computation for structural dynamics. J. Eng. Mech. Div., 85(3):67–94, 1959.
  38. H. Owhadi and C. Scovel. Operator-adapted wavelets, fast solvers, and numerical homogenization, volume 35 of Cambridge Monographs on Applied and Computational Mathematics. Cambridge University Press, Cambridge, 2019.
  39. H. Owhadi. Multigrid with rough coefficients and multiresolution operator decomposition from hierarchical information games. SIAM Rev., 59(1):99–149, 2017.
  40. H. Owhadi and L. Zhang. Numerical homogenization of the acoustic wave equations with a continuum of scales. Comput. Methods Appl. Mech. Engrg., 198(3-4):397–406, 2008.
  41. H. Owhadi and L. Zhang. Gamblets for opening the complexity-bottleneck of implicit schemes for hyperbolic and parabolic ODEs/PDEs with rough coefficients. J. Comput. Phys., 347:99–128, 2017.
  42. D. Peterseim and M. Schedensack. Relaxing the CFL condition for the wave equation on adaptive meshes. J. Sci. Comput., 72(3):1196–1213, 2017.
  43. C. Schwab. p𝑝pitalic_p- and h⁢pℎ𝑝hpitalic_h italic_p-finite element methods. Theory and applications in solid and fluid mechanics. Numerical Mathematics and Scientific Computation. The Clarendon Press, Oxford University Press, New York, 1998.
  44. Operator upscaling for the acoustic wave equation. Multiscale Model. Simul., 4(4):1305–1338, 2005.

Summary

We haven't generated a summary for this paper yet.