Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

PhysRFANet: Physics-Guided Neural Network for Real-Time Prediction of Thermal Effect During Radiofrequency Ablation Treatment (2312.13947v1)

Published 21 Dec 2023 in eess.IV, cs.LG, cs.NA, math.NA, and physics.med-ph

Abstract: Radiofrequency ablation (RFA) is a widely used minimally invasive technique for ablating solid tumors. Achieving precise personalized treatment necessitates feedback information on in situ thermal effects induced by the RFA procedure. While computer simulation facilitates the prediction of electrical and thermal phenomena associated with RFA, its practical implementation in clinical settings is hindered by high computational demands. In this paper, we propose a physics-guided neural network model, named PhysRFANet, to enable real-time prediction of thermal effect during RFA treatment. The networks, designed for predicting temperature distribution and the corresponding ablation lesion, were trained using biophysical computational models that integrated electrostatics, bio-heat transfer, and cell necrosis, alongside magnetic resonance (MR) images of breast cancer patients. Validation of the computational model was performed through experiments on ex vivo bovine liver tissue. Our model demonstrated a 96% Dice score in predicting the lesion volume and an RMSE of 0.4854 for temperature distribution when tested with foreseen tumor images. Notably, even with unforeseen images, it achieved a 93% Dice score for the ablation lesion and an RMSE of 0.6783 for temperature distribution. All networks were capable of inferring results within 10 ms. The presented technique, applied to optimize the placement of the electrode for a specific target region, holds significant promise in enhancing the safety and efficacy of RFA treatments.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (64)
  1. S. McDermott, D. A. Gervais, Radiofrequency ablation of liver tumors, Semin. Intervent. Radiol. 30 (2013) 49–55. doi:10.1055/s-0033-1333653.
  2. F. Zhu, H. Rhim, Thermal ablation for hepatocellular carcinoma: what’s new in 2019, Chin. Clin. Oncol. 8 (2019). doi:10.21037/cco.2019.11.03.
  3. Percutaneous radiofrequency ablation compared with surgical resection in the treatment of early hepatocellular carcinoma, Egypt. J. Surg. 37 (2018). doi:10.4103/ejs.ejs_97_17.
  4. Comparisons between impedance-based and time-based switching bipolar radiofrequency ablation for the treatment of liver cancer, Comput. Biol. Med. 134 (2021) 104488. doi:10.1016/j.compbiomed.2021.104488.
  5. M. C. L. Peek, M. Douek, Ablative techniques for the treatment of benign and malignant breast tumours, J. Ther. Ultrasound 5 (2017) 18. doi:10.1186/s40349-017-0097-8.
  6. H. K. Lim, Radiofrequency thermal ablation of hepatocellular carcinomas, Korean J. Radiol. 1 (2000) 175–184. doi:10.3348/kjr.2000.1.4.175.
  7. Numerical study of the influence of water evaporation on radiofrequency ablation, Biomed. Eng. Online 12 (2013) 127. doi:10.1186/1475-925X-12-127.
  8. E. J. Berjano, Theoretical modeling for radiofrequencyablation: state-of-the-art and challenges for the future, Biomed. Eng. Online 5 (2006) 24. doi:10.1186/1475-925X-5-24.
  9. L. D. Ho, L. J. Min, Recent advances in the image-guided tumor ablation of liver malignancies: Radiofrequency ablation with multiple electrodes, real-time multimodality fusion imaging, and new energy sources, Korean J. Radiol. 19 (2018) 545–559. doi:10.3348/kjr.2018.19.4.545.
  10. Tumour ablation: technical aspects, Cancer Imaging 9 Spec No A (2009) S63–7. doi:10.1102/1470-7330.2009.9026.
  11. Radiofrequency ablation with four electrodes as a building block for matrix radiofrequency ablation: Ex vivo liver experiments and finite element method modelling. influence of electric and activation mode on coagulation size and geometry, Surg. Oncol. 33 (2020) 145–157. doi:10.1016/j.suronc.2020.02.005.
  12. Formulation of 3D finite elements for hepatic radiofrequency ablation, Int. J. Model. Identif. Control. 9 (2010) 225–235. doi:10.1504/IJMIC.2010.032803.
  13. Radio frequency ablation registration, segmentation, and fusion tool, IEEE Trans. Inf. Technol. Biomed. 10 (2006) 490–496. doi:10.1109/titb.2006.872076.
  14. D. Bertaccini, D. Calvetti, Fast simulation of solid tumors thermal ablation treatments with a 3D reaction diffusion model, Comput. Biol. Med. 37 (2007) 1173–1182. doi:10.1016/j.compbiomed.2006.10.008.
  15. Finite element modeling of cooled-tip probe radiofrequency ablation processes in liver tissue, Comput. Biol. Med. 38 (2008) 694–708. doi:10.1016/j.compbiomed.2008.03.007.
  16. A computational theoretical model for radiofrequency ablation of tumor with complex vascularization, Comput. Biol. Med. 89 (2017) 282–292. doi:10.1016/j.compbiomed.2017.08.025.
  17. The effects of electrical and thermal boundary condition on the simulation of radiofrequency ablation of liver cancer for tumours located near to the liver boundary, Comput. Biol. Med. 106 (2019) 12–23. doi:10.1016/j.compbiomed.2019.01.003.
  18. Numerical simulation of radio frequency ablation with state dependent material parameters in three space dimensions, in: Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006. MICCAI 2006. Lecture Notes in Computer Science, vol 4191, volume 9, 2006, pp. 380–8. doi:10.1007/11866763_47.
  19. A. V. Shahidi, P. Savard, A finite element model for radiofrequency ablation of the myocardium, IEEE. Trans. Biomed. Eng. 41 (1994) 963–968. doi:10.1109/10.324528.
  20. S. Singh, R. Repaka, Quantification of thermal injury to the healthy tissue due to imperfect electrode placements during radiofrequency ablation of breast tumor, J. Eng. Sci. Med. Diagn. Ther. 1 (2018) 011002. doi:10.1115/1.4038237.
  21. RFA Guardian: Comprehensive simulation of radiofrequency ablation treatment of liver tumors, Sci. Rep. 8 (2018) 787. doi:10.1038/s41598-017-18899-2.
  22. GPU-based RFA simulation for minimally invasive cancer treatment of liver tumours, Int. J. Comput. Assist. Radiol. Surg. 12 (2017) 59–68. doi:10.1007/s11548-016-1469-1.
  23. Robust GPU-based virtual reality simulation of radio-frequency ablations for various needle geometries and locations, Int. J. Comput. Assist. Radiol. Surg. 14 (2019) 1825–1835. doi:10.1007/s11548-019-02033-w.
  24. Validation of software for patient-specific real-time simulation of hepatic radiofrequency ablation, Acad. Radiol. 29 (2022) e219–e227. doi:10.1016/j.acra.2021.12.018.
  25. A. Akbari, D. Giannacopoulos, An efficient multi-threaded Newton–Raphson algorithm for strong coupling modeling of multi-physics problems, Comput. Phys. Commun. 258 (2021) 107563. doi:10.1016/j.cpc.2020.107563.
  26. J. Abraham, E. Sparrow, A thermal-ablation bioheat model including liquid-to-vapor phase change, pressure- and necrosis-dependent perfusion, and moisture-dependent properties, Int. J. Heat Mass Transf. 50 (2007) 2537–2544. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2006.11.045.
  27. Deep Lagrangian Networks: Using physics as model prior for deep learning, arXiv preprint arXiv:1907.04490 (2019). doi:10.48550/arXiv.1907.04490.
  28. Simulation of hyperelastic materials in real-time using deep learning, Med. Image Anal. 59 (2020) 101569. doi:10.1016/j.media.2019.101569.
  29. Deep neural network for navigation of a single-element transducer during transcranial focused ultrasound therapy: Proof of concept, IEEE J. Biomed. Health Inform. 26 (2022) 5653–5664. doi:10.1109/JBHI.2022.3198650.
  30. Y. Salehi, D. Giannacopoulos, PhysGNN: A physics–driven graph neural network based model for predicting soft tissue deformation in image–guided neurosurgery, Adv. Neural Inf. Process. Syst. 35 (2022) 37282–37296. doi:10.48550/arXiv.2109.04352.
  31. Multivariable-incorporating super-resolution residual network for transcranial focused ultrasound simulation, Comput. Methods Programs Biomed. 237 (2023) 107591. doi:10.1016/j.cmpb.2023.107591.
  32. Real-time radiofrequency ablation lesion depth estimation using multi-frequency impedance with a deep neural network and tree-based ensembles, IEEE. Trans. Biomed. Eng. 67 (2020) 1890–1899. doi:10.1109/TBME.2019.2950342.
  33. A machine learning approach to radiogenomics of breast cancer: a study of 922 subjects and 529 DCE-MRI features, Br. J. Cancer. 119 (2018) 508–516. doi:10.1038/s41416-018-0185-8.
  34. S. Singh, R. Repaka, Temperature-controlled radiofrequency ablation of different tissues using two-compartment models, Int. J. Hyperth. 33 (2017) 122–134. doi:10.1080/02656736.2016.1223890.
  35. GPU-based real-time approximation of the ablation zone for radiofrequency ablation, IEEE Trans. Vis. Comput. Graph. 17 (2011) 1812–1821. doi:10.1109/TVCG.2011.207.
  36. System development of microwave induced thermo-acoustic tomography and experiments on breast tumor, Prog. Electromagn. Res. 134 (2013) 323–336. doi:10.2528/Pier12101604.
  37. H. H. Pennes, Analysis of tissue and arterial blood temperatures in the resting human forearm, J. Appl. Physiol. 1 (1948) 93–122. doi:10.1152/jappl.1948.1.2.93.
  38. S. Labonte, Numerical model for radio-frequency ablation of the endocardium and its experimental validation, IEEE. Trans. Biomed. Eng. 41 (1994) 108–115. doi:10.1109/10.284921.
  39. Laser–tissue interaction simulation considering skin-specific data to predict photothermal damage lesions during laser irradiation, J. Comput. Des. Eng. 10 (2023) 947–958. doi:10.1093/jcde/qwad033.
  40. F. C. Henriques Jr, Studies of thermal injury; the predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury, Arch. Pathol. 43 (1947) 489–502.
  41. High-fidelity computer models for prospective treatment planning of radiofrequency ablation with in vitro experimental correlation, J. Vasc. Interv. Radiol. 21 (2010) 1725–1732. doi:10.1016/j.jvir.2010.07.022.
  42. Characterisation of ex vivo liver thermal properties for electromagnetic-based hyperthermic therapies, Sensors 20 (2020) 3004. doi:https://doi.org/10.3390/s20103004.
  43. The importance of skip connections in biomedical image segmentation, in: G. Carneiro, D. Mateus, L. Peter, A. Bradley, J. M. R. S. Tavares, V. Belagiannis, J. P. Papa, J. C. Nascimento, M. Loog, Z. Lu, J. S. Cardoso, J. Cornebise (Eds.), Deep Learning and Data Labeling for Medical Applications, Springer International Publishing, Cham, 2016, pp. 179–187. doi:10.1007/978-3-319-46976-8_19.
  44. Deep residual learning for image recognition, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778. doi:10.1109/CVPR.2016.90.
  45. Densely connected convolutional networks, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 2261–2269. doi:10.1109/CVPR.2017.243.
  46. Hypercolumns for object segmentation and fine-grained localization, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 447–456. doi:10.1109/CVPR.2015.7298642.
  47. Feature pyramid networks for object detection, in: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 936–944. doi:10.1109/CVPR.2017.106.
  48. UNet++: A nested U-Net architecture for medical image segmentation, in: D. Stoyanov, Z. Taylor, G. Carneiro, T. Syeda-Mahmood, A. Martel, L. Maier-Hein, J. M. R. Tavares, A. Bradley, J. P. Papa, V. Belagiannis, J. C. Nascimento, Z. Lu, S. Conjeti, M. Moradi, H. Greenspan, A. Madabhushi (Eds.), Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, Springer International Publishing, Cham, 2018, pp. 3–11. doi:10.1007/978-3-030-00889-5_1.
  49. Temperature-dependent cell death patterns induced by functionalized gold nanoparticle photothermal therapy in melanoma cells, Sci. Rep. 8 (2018) 8720. doi:10.1038/s41598-018-26978-1.
  50. T. Sorenson, A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on danish commons, K. dansk. Vidensk. Selsk. Skr. 5 (1948) 1–34.
  51. L. R. Dice, Measures of the amount of ecologic association between species, Ecology 26 (1945) 297–302. doi:10.2307/1932409.
  52. P. Jaccard, The distribution of the flora in the Alpine zone.1, New Phytol. 11 (1912) 37–50. doi:10.1111/j.1469-8137.1912.tb05611.x.
  53. NIH image to ImageJ: 25 years of image analysis, Nat. Methods 9 (2012) 671–675. doi:10.1038/nmeth.2089.
  54. The effect of radiofrequency ablation on different organs: Ex vivo and in vivo comparative studies, Eur. J. Radiol. 80 (2011) 526–532. doi:10.1016/j.ejrad.2009.11.011.
  55. Radiofrequency ablation of liver tumors: Actual limitations and potential solutions in the future, World J. Hepatol. 3 (2011) 8–14. doi:10.4254/wjh.v3.i1.8.
  56. Radiofrequency ablation of porcine liver in vivo: Effects of blood flow and treatment time on lesion size, Ann. Surg. 227 (1998). doi:10.1097/00000658-199804000-00018.
  57. Comparative analysis of the immune response to RFA and cryoablation in a colon cancer mouse model, Sci. Rep. 12 (2022) 18229. doi:10.1038/s41598-022-22279-w.
  58. Needle deflection in thermal ablation procedures of liver tumors: a CT image analysis, in: B. Fei, R. J. Webster (Eds.), Medical Imaging 2018: Image-Guided Procedures, Robotic Interventions, and Modeling, volume 10576 of Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2018, p. 105761L. doi:10.1117/12.2292884.
  59. Computer modeling of radiofrequency cardiac ablation including heartbeat-induced electrode displacement, Comput. Biol. Med. 144 (2022) 105346. doi:10.1016/j.compbiomed.2022.105346.
  60. FEM-based MRI deformation algorithm for breast deformation analysis, Biocybern. Biomed. Eng. 40 (2020) 1304–1313. doi:10.1016/j.bbe.2020.07.009.
  61. Image-guided tumor ablation: emerging technologies and future directions, Semin. Intervent. Radiol. 27 (2010) 302–313. doi:10.1055/s-0030-1261789.
  62. Feasibility of extracted-overlay fusion imaging for intraoperative treatment evaluation of radiofrequency ablation for hepatocellular carcinoma, Liver Cancer 5 (2016) 269–279. doi:10.1159/000449338.
  63. Navigation systems for ablation, J. Vasc. Interv. Radiol. 21 (2010) S257–S263. Thermal Ablation 2010: At the Crossroads of Past Success, Current Goals, and Future Technology. doi:10.1016/j.jvir.2010.05.003.
  64. Clinical utility of real-time fusion guidance for biopsy and ablation, J. Vasc. Interv. Radiol. 22 (2011) 515–524. doi:10.1016/j.jvir.2010.10.033.

Summary

We haven't generated a summary for this paper yet.