Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Binary Endogenous Treatment in Stochastic Frontier Models with an Application to Soil Conservation in El Salvador (2312.13939v1)

Published 21 Dec 2023 in econ.EM and stat.AP

Abstract: Improving the productivity of the agricultural sector is part of one of the Sustainable Development Goals set by the United Nations. To this end, many international organizations have funded training and technology transfer programs that aim to promote productivity and income growth, fight poverty and enhance food security among smallholder farmers in developing countries. Stochastic production frontier analysis can be a useful tool when evaluating the effectiveness of these programs. However, accounting for treatment endogeneity, often intrinsic to these interventions, only recently has received any attention in the stochastic frontier literature. In this work, we extend the classical maximum likelihood estimation of stochastic production frontier models by allowing both the production frontier and inefficiency to depend on a potentially endogenous binary treatment. We use instrumental variables to define an assignment mechanism for the treatment, and we explicitly model the density of the first and second-stage composite error terms. We provide empirical evidence of the importance of controlling for endogeneity in this setting using farm-level data from a soil conservation program in El Salvador.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (3)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com