Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
Gemini 2.5 Pro
GPT-5
GPT-4o
DeepSeek R1 via Azure
2000 character limit reached

Comparative Evaluation of Anomaly Detection Methods for Fraud Detection in Online Credit Card Payments (2312.13896v1)

Published 21 Dec 2023 in cs.LG and q-fin.ST

Abstract: This study explores the application of anomaly detection (AD) methods in imbalanced learning tasks, focusing on fraud detection using real online credit card payment data. We assess the performance of several recent AD methods and compare their effectiveness against standard supervised learning methods. Offering evidence of distribution shift within our dataset, we analyze its impact on the tested models' performances. Our findings reveal that LightGBM exhibits significantly superior performance across all evaluated metrics but suffers more from distribution shifts than AD methods. Furthermore, our investigation reveals that LightGBM also captures the majority of frauds detected by AD methods. This observation challenges the potential benefits of ensemble methods to combine supervised, and AD approaches to enhance performance. In summary, this research provides practical insights into the utility of these techniques in real-world scenarios, showing LightGBM's superiority in fraud detection while highlighting challenges related to distribution shifts.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020). URL https://proceedings.neurips.cc/paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html
  2. In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 15–27. Springer (2002)
  3. In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 785–790 (2018). 10.1109/ICMLA.2018.00125
  4. In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=H1lK_lBtvS
  5. CoRR abs/2112.12024 (2021). URL https://arxiv.org/abs/2112.12024
  6. In: W. Chen, J.F. Naughton, P.A. Bernstein (eds.) Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pp. 93–104. ACM (2000). 10.1145/342009.335388. URL https://doi.org/10.1145/342009.335388
  7. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, p. 785–794. Association for Computing Machinery, New York, NY, USA (2016). 10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785
  8. In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, p. 233–240. Association for Computing Machinery, New York, NY, USA (2006). 10.1145/1143844.1143874. URL https://doi.org/10.1145/1143844.1143874
  9. In: Proceedings of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota, USA, pp. 473–478. SIAM (2007). 10.1137/1.9781611972771.47. URL https://doi.org/10.1137/1.9781611972771.47
  10. Journal of High Energy Physics 2021(6) (2021). 10.1007/jhep06(2021)161. URL http://dx.doi.org/10.1007/JHEP06(2021)161
  11. Frery, J.: Ensemble Learning for Extremely Imbalced Data Flows. Theses, Université de Lyon (2019). URL https://tel.archives-ouvertes.fr/tel-02899943
  12. 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 1705–1714 (2019)
  13. In: Neural Information Processing Systems (2019). URL https://api.semanticscholar.org/CorpusID:202766416
  14. In: A. Beygelzimer, Y. Dauphin, P. Liang, J.W. Vaughan (eds.) Advances in Neural Information Processing Systems (2021). URL https://openreview.net/forum?id=i˙Q1yrOegLY
  15. In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). URL https://openreview.net/forum?id=Fp7˙˙phQszn
  16. Journal of Theoretical and Applied Electronic Commerce Research 16(6), 2263–2281 (2021). 10.3390/jtaer16060125. URL https://www.mdpi.com/0718-1876/16/6/125
  17. In: ICML (2016). URL https://www.amazon.science/publications/robust-random-cut-forest-based-anomaly-detection-on-streams
  18. IEEE Transactions on Knowledge and Data Engineering 33(4), 1479–1489 (2021). 10.1109/TKDE.2019.2947676
  19. In: B. Schölkopf, J.C. Platt, T. Hofmann (eds.) Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pp. 617–624. MIT Press (2006). URL https://proceedings.neurips.cc/paper/2006/hash/2227d753dc18505031869d44673728e2-Abstract.html
  20. Intell. Data Anal. 6(5), 429–449 (2002)
  21. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)
  22. Advances in neural information processing systems 30, 3146–3154 (2017)
  23. In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HkgeGeBYDB
  24. 2020 IEEE International Conference on Data Mining (ICDM) (2020). 10.1109/icdm50108.2020.00135. URL http://dx.doi.org/10.1109/ICDM50108.2020.00135
  25. IEEE Transactions on Knowledge and Data Engineering pp. 1–1 (2022). 10.1109/TKDE.2022.3159580
  26. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). 10.1109/ICDM.2008.17
  27. Journal of Machine Learning Research 9, 2579–2605 (2008). URL http://www.jmlr.org/papers/v9/vandermaaten08a.html
  28. In: ICMLA 2019 - 18th IEEE International Conference on Machine Learning and Applications, 18th International Conference on Machine Learning Applications. Boca Raton, United States (2019). URL https://hal.inria.fr/hal-02396279
  29. In: International Conference on Machine Learning, pp. 8703–8714. PMLR (2021)
  30. In: ACM Sigmod Record, vol. 29, pp. 427–438. ACM (2000)
  31. In: J. Dy, A. Krause (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR (2018). URL https://proceedings.mlr.press/v80/ruff18a.html
  32. In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HkgH0TEYwH
  33. In: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99, p. 582–588. MIT Press, Cambridge, MA, USA (1999)
  34. In: International Conference on Learning Representations (2022). URL https://openreview.net/forum?id=_hszZbt46bT
  35. CoRR abs/2106.01342 (2021). URL https://arxiv.org/abs/2106.01342
  36. In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) NeurIPS (2020). URL https://proceedings.neurips.cc/paper/2020
  37. Machine Learning 54, 45–66 (2004). 10.1023/B:MACH.0000008084.60811.49
  38. In: NeurIPS 2023 Second Table Representation Learning Workshop (2023). URL https://openreview.net/forum?id=lsn7ehxAdt
  39. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2022). 10.1109/IJCNN55064.2022.9892058
  40. International Journal of Pattern Recognition and Artificial Intelligence 23, 687–719 (2011). 10.1142/S0218001409007326
  41. Journal of Machine Learning Research 20(96), 1–7 (2019). URL http://jmlr.org/papers/v20/19-011.html
Citations (3)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.