Comparative Evaluation of Anomaly Detection Methods for Fraud Detection in Online Credit Card Payments (2312.13896v1)
Abstract: This study explores the application of anomaly detection (AD) methods in imbalanced learning tasks, focusing on fraud detection using real online credit card payment data. We assess the performance of several recent AD methods and compare their effectiveness against standard supervised learning methods. Offering evidence of distribution shift within our dataset, we analyze its impact on the tested models' performances. Our findings reveal that LightGBM exhibits significantly superior performance across all evaluated metrics but suffers more from distribution shifts than AD methods. Furthermore, our investigation reveals that LightGBM also captures the majority of frauds detected by AD methods. This observation challenges the potential benefits of ensemble methods to combine supervised, and AD approaches to enhance performance. In summary, this research provides practical insights into the utility of these techniques in real-world scenarios, showing LightGBM's superiority in fraud detection while highlighting challenges related to distribution shifts.
- In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual (2020). URL https://proceedings.neurips.cc/paper/2020/hash/f52a7b2610fb4d3f74b4106fb80b233d-Abstract.html
- In: European Conference on Principles of Data Mining and Knowledge Discovery, pp. 15–27. Springer (2002)
- In: 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 785–790 (2018). 10.1109/ICMLA.2018.00125
- In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=H1lK_lBtvS
- CoRR abs/2112.12024 (2021). URL https://arxiv.org/abs/2112.12024
- In: W. Chen, J.F. Naughton, P.A. Bernstein (eds.) Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, May 16-18, 2000, Dallas, Texas, USA, pp. 93–104. ACM (2000). 10.1145/342009.335388. URL https://doi.org/10.1145/342009.335388
- In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, p. 785–794. Association for Computing Machinery, New York, NY, USA (2016). 10.1145/2939672.2939785. URL https://doi.org/10.1145/2939672.2939785
- In: Proceedings of the 23rd International Conference on Machine Learning, ICML ’06, p. 233–240. Association for Computing Machinery, New York, NY, USA (2006). 10.1145/1143844.1143874. URL https://doi.org/10.1145/1143844.1143874
- In: Proceedings of the Seventh SIAM International Conference on Data Mining, April 26-28, 2007, Minneapolis, Minnesota, USA, pp. 473–478. SIAM (2007). 10.1137/1.9781611972771.47. URL https://doi.org/10.1137/1.9781611972771.47
- Journal of High Energy Physics 2021(6) (2021). 10.1007/jhep06(2021)161. URL http://dx.doi.org/10.1007/JHEP06(2021)161
- Frery, J.: Ensemble Learning for Extremely Imbalced Data Flows. Theses, Université de Lyon (2019). URL https://tel.archives-ouvertes.fr/tel-02899943
- 2019 IEEE/CVF International Conference on Computer Vision (ICCV) pp. 1705–1714 (2019)
- In: Neural Information Processing Systems (2019). URL https://api.semanticscholar.org/CorpusID:202766416
- In: A. Beygelzimer, Y. Dauphin, P. Liang, J.W. Vaughan (eds.) Advances in Neural Information Processing Systems (2021). URL https://openreview.net/forum?id=i˙Q1yrOegLY
- In: Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track (2022). URL https://openreview.net/forum?id=Fp7˙˙phQszn
- Journal of Theoretical and Applied Electronic Commerce Research 16(6), 2263–2281 (2021). 10.3390/jtaer16060125. URL https://www.mdpi.com/0718-1876/16/6/125
- In: ICML (2016). URL https://www.amazon.science/publications/robust-random-cut-forest-based-anomaly-detection-on-streams
- IEEE Transactions on Knowledge and Data Engineering 33(4), 1479–1489 (2021). 10.1109/TKDE.2019.2947676
- In: B. Schölkopf, J.C. Platt, T. Hofmann (eds.) Advances in Neural Information Processing Systems 19, Proceedings of the Twentieth Annual Conference on Neural Information Processing Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pp. 617–624. MIT Press (2006). URL https://proceedings.neurips.cc/paper/2006/hash/2227d753dc18505031869d44673728e2-Abstract.html
- Intell. Data Anal. 6(5), 429–449 (2002)
- In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)
- Advances in neural information processing systems 30, 3146–3154 (2017)
- In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HkgeGeBYDB
- 2020 IEEE International Conference on Data Mining (ICDM) (2020). 10.1109/icdm50108.2020.00135. URL http://dx.doi.org/10.1109/ICDM50108.2020.00135
- IEEE Transactions on Knowledge and Data Engineering pp. 1–1 (2022). 10.1109/TKDE.2022.3159580
- In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422 (2008). 10.1109/ICDM.2008.17
- Journal of Machine Learning Research 9, 2579–2605 (2008). URL http://www.jmlr.org/papers/v9/vandermaaten08a.html
- In: ICMLA 2019 - 18th IEEE International Conference on Machine Learning and Applications, 18th International Conference on Machine Learning Applications. Boca Raton, United States (2019). URL https://hal.inria.fr/hal-02396279
- In: International Conference on Machine Learning, pp. 8703–8714. PMLR (2021)
- In: ACM Sigmod Record, vol. 29, pp. 427–438. ACM (2000)
- In: J. Dy, A. Krause (eds.) Proceedings of the 35th International Conference on Machine Learning, Proceedings of Machine Learning Research, vol. 80, pp. 4393–4402. PMLR (2018). URL https://proceedings.mlr.press/v80/ruff18a.html
- In: International Conference on Learning Representations (2020). URL https://openreview.net/forum?id=HkgH0TEYwH
- In: Proceedings of the 12th International Conference on Neural Information Processing Systems, NIPS’99, p. 582–588. MIT Press, Cambridge, MA, USA (1999)
- In: International Conference on Learning Representations (2022). URL https://openreview.net/forum?id=_hszZbt46bT
- CoRR abs/2106.01342 (2021). URL https://arxiv.org/abs/2106.01342
- In: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin (eds.) NeurIPS (2020). URL https://proceedings.neurips.cc/paper/2020
- Machine Learning 54, 45–66 (2004). 10.1023/B:MACH.0000008084.60811.49
- In: NeurIPS 2023 Second Table Representation Learning Workshop (2023). URL https://openreview.net/forum?id=lsn7ehxAdt
- In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–6 (2022). 10.1109/IJCNN55064.2022.9892058
- International Journal of Pattern Recognition and Artificial Intelligence 23, 687–719 (2011). 10.1142/S0218001409007326
- Journal of Machine Learning Research 20(96), 1–7 (2019). URL http://jmlr.org/papers/v20/19-011.html