Unitary rational best approximations to the exponential function (2312.13809v1)
Abstract: Rational best approximations (in a Chebyshev sense) to real functions are characterized by an equioscillating approximation error. Similar results do not hold true for rational best approximations to complex functions in general. In the present work, we consider unitary rational approximations to the exponential function on the imaginary axis, which map the imaginary axis to the unit circle. In the class of unitary rational functions, best approximations are shown to exist, to be uniquely characterized by equioscillation of a phase error, and to possess a super-linear convergence rate. Furthermore, the best approximations have full degree (i.e., non-degenerate), achieve their maximum approximation error at points of equioscillation, and interpolate at intermediate points. Asymptotic properties of poles, interpolation nodes, and equioscillation points of these approximants are studied. Three algorithms, which are found very effective to compute unitary rational approximations including candidates for best approximations, are sketched briefly. Some consequences to numerical time-integration are discussed. In particular, time propagators based on unitary best approximants are unitary, symmetric and A-stable.
- On the scalar rational interpolation problem. IMA J. Math. Control Inform., 3(2-3):61–88, 1986. doi:10.1093/imamci/3.2-3.61.
- M. Artin. Algebra. Pearson Prentice Hall, Upper Saddle River, NJ, USA, second edition, 2011.
- V. Belevitch. Interpolation matrices. Philips Res. Rep., 25:337–369, 1970.
- G.A. Baker and P. Graves-Morris. Padé Approximants. Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, UK, second edition, 1996. doi:10.1017/CBO9780511530074.
- G. Claessens. On the Newton–Padé approximation problem. J. Approx. Theory, 22(2):150–160, 1978. doi:10.1016/0021-9045(78)90062-X.
- Chebyshev rational approximations to e−xsuperscript𝑒𝑥e^{-x}italic_e start_POSTSUPERSCRIPT - italic_x end_POSTSUPERSCRIPT in [0,+∞)0[0,+\infty)[ 0 , + ∞ ) and applications to heat-conduction problems. J. Approx. Theory, 2(1):50–65, 1969. doi:10.1016/0021-9045(69)90030-6.
- C. de Boor. Divided differences. Surv. Approx. Theory, 1:46–69, 2005.
- Universal spectra of random Lindblad operators. Phys. Rev. Lett., 123:140403, 2019. doi:10.1103/PhysRevLett.123.140403.
- Nonuniqueness of best rational Chebyshev approximations on the unit disk. J. Approx. Theory, 39(3):275–288, 1983. doi:10.1016/0021-9045(83)90099-0.
- M.H. Gutknecht. In what sense is the rational interpolation problem well posed. Constr. Approx., 6(4):437–450, 1990. doi:10.1007/BF01888274.
- N. Higham. Functions of Matrices. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2008. doi:10.1137/1.9780898717778.
- Geometric Numerical Integration: Structure-Preserving Algorithms for Ordinary Differential Equations. Springer-Verlag, Berlin, second edition, 2006. doi:10.1007/3-540-30666-8.
- C. Hofreither. An algorithm for best rational approximation based on barycentric rational interpolation. Numer. Algorithms, 88(1):365–388, 2021. doi:10.1007/s11075-020-01042-0.
- M. Huhtanen. Rational approximation of the unitary exponential. IMA J. Numer. Anal., 30(2):512–524, 2010. doi:10.1093/imanum/drn068.
- E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Springer-Verlag, Berlin, 2002. doi:10.1007/978-3-642-05221-7.
- A. Iserles. On Cayley-transform methods for the discretization of Lie-group equations. Found. Comput. Math., 1(2):129–160, 2001. doi:10.1007/s102080010003.
- T Jawecki. Algorithms for unitary best approximations. to be published.
- T. Jawecki and P. Singh. Unitarity of some barycentric rational approximants. IMA J. Numer. Anal., 0(0):1–19, 2023. doi:10.1093/imanum/drad066.
- L. Knockaert. A simple and accurate algorithm for barycentric rational interpolation. IEEE Signal Process. Lett., 15:154–157, 2008. doi:10.1109/LSP.2007.913583.
- J.D. Lawrence. A Catalog of Special Plane Curves. Dover Books on Mathematics. Dover, New York, 1995.
- J. Lam and K.W. Chung. Error bounds for Padé approximations of e−zsuperscript𝑒𝑧e^{-z}italic_e start_POSTSUPERSCRIPT - italic_z end_POSTSUPERSCRIPT on the imaginary axis. J. Approx. Theory, 69(2):222–230, 1992. doi:10.1016/0021-9045(92)90145-E.
- C. Lubich. From Quantum to Classical Molecular Dynamics; Reduced Models and Numerical Analysis. Zurich lectures in advanced mathematics. Europ. Math. Soc., Zürich, 2008. doi:10.4171/067.
- A. Marthinsen and B. Owren. Quadrature methods based on the Cayley transform. Appl. Numer. Math., 39(3):403–413, 2001. doi:10.1016/S0168-9274(01)00087-3.
- Complex absorbing potentials. Phys. Rep., 395(6):357–426, 2004. doi:10.1016/j.physrep.2004.03.002.
- C. Moler and C. Van Loan. Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev., 45(1):3–49, 2003. doi:10.1137/S00361445024180.
- H. Maehly and C. Witzgall. Tschebyscheff-Approximationen in kleinen Intervallen II. Numer. Math., 2(1):293–307, 1960. doi:10.1007/BF01386230.
- The AAA algorithm for rational approximation. SIAM J. Sci. Comput., 40(3):A1494–A1522, 2018. doi:10.1137/16M1106122.
- Y. Nakatsukasa and L.N. Trefethen. An algorithm for real and complex rational minimax approximation. SIAM J. Sci. Comput., 42(5):A3157–A3179, 2020. doi:10.1137/19M1281897.
- Fast and stable rational interpolation in roots of unity and Chebyshev points. SIAM J. Numer. Anal., 50(3):1713–1734, 2012. doi:10.1137/100797291.
- R. Pachón and L.N. Trefethen. Barycentric–Remez algorithms for best polynomial approximation in the chebfun system. BIT, 49(4):721–741, 2009. doi:10.1007/s10543-009-0240-1.
- M. Riesch and C. Jirauschek. Analyzing the positivity preservation of numerical methods for the Liouville–von Neumann equation. J. Comp. Phys., 390:290–296, 2019. doi:10.1016/j.jcp.2019.04.006.
- A. Ruttan and R.S. Varga. Real vs. complex rational Chebyshev approximation on an interval. Rocky Mountain J. Math., 19(1):375–381, 1989. doi:10.1216/RMJ-1989-19-1-375.
- H.E. Salzer. Note on osculatory rational interpolation. Math. Comp., 16(80):486–491, 1962. doi:10.1090/s0025-5718-1962-0149648-7.
- E. Süli and D. Mayers. An Introduction to Numerical Analysis. Cambridge University Press, Cambridge, UK, 2003. doi:10.1017/CBO9780511801181.
- L.N. Trefethen. Rational Chebyshev approximation on the unit disk. Numer. Math., 37(2):297–320, 1981. doi:10.1007/bf01398258.
- L.N. Trefethen. Approximation Theory and Approximation Practice. Society for Industrial and Applied Mathematics, Philadelphia, PA, USA, 2013. doi:10.1137/1.9780898717778.
- J.L. Walsh. The existence of rational functions of best approximation. Trans. Amer. Math. Soc., 33(3):668–689, 1931. doi:10.1090/s0002-9947-1931-1501609-5.