Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Blind Localization of Room Reflections with Application to Spatial Audio (2312.13707v1)

Published 21 Dec 2023 in eess.AS and cs.SD

Abstract: Blind estimation of early room reflections, without knowledge of the room impulse response, holds substantial value. The FF-PHALCOR (Frequency Focusing PHase ALigned CORrelation), method was recently developed for this objective, extending the original PHALCOR method from spherical to arbitrary arrays. However, previous studies only compared the two methods under limited conditions without presenting a comprehensive performance analysis. This study presents an advance by evaluating the performance of the algorithm in a wider range of conditions. Additionally, performance in terms of perception is investigated through a listening test. This test involves synthesizing room impulse responses from known room acoustics parameters and replacing the early reflections with the estimated ones. The importance of the estimated reflections for spatial perception is demonstrated through this test.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (31)
  1. H. A. Javed, A. H. Moore, and P. A. Naylor, “Spherical microphone array acoustic rake receivers,” in 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).   IEEE, 2016, pp. 111–115.
  2. E. Mabande, K. Kowalczyk, H. Sun, and W. Kellermann, “Room geometry inference based on spherical microphone array eigenbeam processing,” The Journal of the Acoustical Society of America, vol. 134, no. 4, pp. 2773–2789, 2013.
  3. K. MacWilliam, F. Elvander, and T. v. Waterschoot, “Simultaneous acoustic echo sorting and 3-d room geometry inference,” in ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2023, pp. 1–5.
  4. E. Vincent, N. Bertin, R. Gribonval, and F. Bimbot, “From blind to guided audio source separation: How models and side information can improve the separation of sound,” IEEE Signal Processing Magazine, vol. 31, no. 3, pp. 107–115, 2014.
  5. K. Kowalczyk, S. Kacprzak, and M. Ziółko, “On the extraction of early reflection signals for automatic speech recognition,” in 2017 IEEE 2nd International Conference on Signal and Image Processing (ICSIP).   IEEE, 2017, pp. 351–355.
  6. Y. Peled and B. Rafaely, “Method for dereverberation and noise reduction using spherical microphone arrays,” in 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.   IEEE, 2010, pp. 113–116.
  7. J. Catic, S. Santurette, and T. Dau, “The role of reverberation-related binaural cues in the externalization of speech,” The Journal of the Acoustical Society of America, vol. 138, no. 2, pp. 1154–1167, 2015.
  8. P. Coleman, A. Franck, P. Jackson, R. J. Hughes, L. Remaggi, F. Melchior et al., “Object-based reverberation for spatial audio,” Journal of the Audio Engineering Society, vol. 65, no. 1/2, pp. 66–77, 2017.
  9. B. Rafaely, V. Tourbabin, E. Habets, Z. Ben-Hur, H. Lee, H. Gamper, L. Arbel, L. Birnie, T. Abhayapala, and P. Samarasinghe, “Spatial audio signal processing for binaural reproduction of recorded acoustic scenes–review and challenges,” Acta Acustica, vol. 6, p. 47, 2022.
  10. H. Sun, E. Mabande, K. Kowalczyk, and W. Kellermann, “Localization of distinct reflections in rooms using spherical microphone array eigenbeam processing,” The Journal of the Acoustical Society of America, vol. 131, no. 4, pp. 2828–2840, 2012.
  11. B. Jo and J.-W. Choi, “Robust localization of early reflections in a room using semi real-valued EB-ESPRIT with three recurrence relations and laplacian constraint,” in International Commission for Acoustics (ICA).   International Commission for Acoustics (ICA), 2019.
  12. D. Ciuonzo, G. Romano, and R. Solimene, “Performance analysis of time-reversal music,” IEEE Transactions on Signal Processing, vol. 63, no. 10, pp. 2650–2662, 2015.
  13. D. Ciuonzo, “On time-reversal imaging by statistical testing,” IEEE Signal Processing Letters, vol. 24, no. 7, pp. 1024–1028, 2017.
  14. T. Shlomo and B. Rafaely, “Blind localization of early room reflections using phase aligned spatial correlation,” IEEE Transactions on Signal Processing, vol. 69, pp. 1213–1225, 2021.
  15. Y. Hadadi, V. Tourbabin, P. Calamia, and B. Rafaely, “Towards blind localization of room reflections with arbitrary microphone arrays,” Journal of the Audio Engineering Society, august 2022.
  16. H. Beit-On and B. Rafaely, “Focusing and frequency smoothing for arbitrary arrays with application to speaker localization,” IEEE/ACM Transactions on Audio, Speech, and Language Processing, vol. 28, pp. 2184–2193, 2020.
  17. J. B. Allen and D. A. Berkley, “Image method for efficiently simulating small-room acoustics,” The Journal of the Acoustical Society of America, vol. 65, no. 4, pp. 943–950, 1979.
  18. M. Ester, H.-P. Kriegel, J. Sander, X. Xu et al., “A density-based algorithm for discovering clusters in large spatial databases with noise.” in Kdd, vol. 96, no. 34, 1996, pp. 226–231.
  19. M. H. Acoustics, “Em32 eigenmike microphone array release notes (v17. 0),” 25 Summit Ave, Summit, NJ 07901, USA, 2013.
  20. P. Kabal, “TSP speech database,” McGill University, Database Version, vol. 1, no. 0, pp. 09–02, 2002.
  21. P. Calamia, N. Balsam, and P. Robinson, “Blind estimation of the direct-to-reverberant ratio using a beta distribution fit to binaural coherence,” The Journal of the Acoustical Society of America, vol. 148, no. 4, pp. EL359–EL364, 2020.
  22. W. C. Sabine and M. D. Egan, “Collected papers on acoustics,” 1994.
  23. H. Kuttruff and E. Mommertz, “Room acoustics,” in Handbook of Engineering Acoustics.   Springer, 2012, pp. 239–267.
  24. W. C. Sabine, “Reverberation,” The American Architect, vol. 4, 1900.
  25. J. Fliege and U. Maier, “A two-stage approach for computing cubature formulae for the sphere,” in Mathematik 139T, Universitat Dortmund, Fachbereich Mathematik, Universitat Dortmund, 44221.   Citeseer, 1996.
  26. S. Kitić and J. Daniel, “Blind identification of ambisonic reduced room impulse response,” arXiv preprint arXiv:2305.03558, 2023.
  27. B. Series, “Method for the subjective assessment of intermediate quality level of audio systems,” International Telecommunication Union Radiocommunication Assembly, 2014.
  28. B. Bernschütz, “A spherical far field HRIR/HRTF compilation of the neumann KU 100,” in Proceedings of the 40th Italian (AIA) annual conference on acoustics and the 39th German annual conference on acoustics (DAGA) conference on acoustics.   German Acoustical Society (DEGA) Berlin, 2013, p. 29.
  29. M. R. Schroeder, “New method of measuring reverberation time,” The Journal of the Acoustical Society of America, vol. 37, no. 6, pp. 1187–1188, 1965.
  30. B. Rafaely and A. Avni, “Interaural cross correlation in a sound field represented by spherical harmonics,” The Journal of the Acoustical Society of America, vol. 127, no. 2, pp. 823–828, 2010.
  31. H. Keselman, J. Algina, and R. K. Kowalchuk, “The analysis of repeated measures designs: a review,” British Journal of Mathematical and Statistical Psychology, vol. 54, no. 1, pp. 1–20, 2001.
Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com