Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Forecasting-Based DLP Approach for Data Security (2312.13704v1)

Published 21 Dec 2023 in cs.CR and cs.LG

Abstract: Sensitive data leakage is the major growing problem being faced by enterprises in this technical era. Data leakage causes severe threats for organization of data safety which badly affects the reputation of organizations. Data leakage is the flow of sensitive data/information from any data holder to an unauthorized destination. Data leak prevention (DLP) is set of techniques that try to alleviate the threats which may hinder data security. DLP unveils guilty user responsible for data leakage and ensures that user without appropriate permission cannot access sensitive data and also provides protection to sensitive data if sensitive data is shared accidentally. In this paper, data leakage prevention (DLP) model is used to restrict/grant data access permission to user, based on the forecast of their access to data. This study provides a DLP solution using data statistical analysis to forecast the data access possibilities of any user in future based on the access to data in the past. The proposed approach makes use of renowned simple piecewise linear function for learning/training to model. The results show that the proposed DLP approach with high level of precision can correctly classify between users even in cases of extreme data access.

Citations (5)

Summary

We haven't generated a summary for this paper yet.