Local certification of local properties: tight bounds, trade-offs and new parameters (2312.13702v2)
Abstract: Local certification is a distributed mechanism enabling the nodes of a network to check the correctness of the current configuration, thanks to small pieces of information called certificates. For many classic global properties, like checking the acyclicity of the network, the optimal size of the certificates depends on the size of the network, $n$. In this paper, we focus on properties for which the size of the certificates does not depend on $n$ but on other parameters. We focus on three such important properties and prove tight bounds for all of them. Namely, we prove that the optimal certification size is: $\Theta(\log k)$ for $k$-colorability (and even exactly $\lceil \log k \rceil$ bits in the anonymous model while previous works had only proved a $2$-bit lower bound); $(1/2)\log t+o(\log t)$ for dominating sets at distance $t$ (an unexpected and tighter-than-usual bound) ; and $\Theta(\log \Delta)$ for perfect matching in graphs of maximum degree $\Delta$ (the first non-trivial bound parameterized by $\Delta$). We also prove some surprising upper bounds, for example, certifying the existence of a perfect matching in a planar graph can be done with only two bits. In addition, we explore various specific cases for these properties, in particular improving our understanding of the trade-off between locality of the verification and certificate size.
- Lower bounds for maximal matchings and maximal independent sets. J. ACM, 68(5):39:1–39:30, 2021.
- Optimal deterministic self-stabilizing vertex coloring in unidirectional anonymous networks. In 23rd IEEE International Symposium on Parallel and Distributed Processing, IPDPS 2009, pages 1–8, 2009.
- Distributed zero-knowledge proofs over networks. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, pages 2426–2458. SIAM, 2022.
- What can be certified compactly? compact local certification of MSO properties in tree-like graphs. In PODC ’22: ACM Symposium on Principles of Distributed Computing, pages 131–140, 2022.
- Truly tight-in-ΔΔ\Deltaroman_Δ bounds for bipartite maximal matching and variants. In PODC ’20: ACM Symposium on Principles of Distributed Computing, pages 69–78, 2020.
- Jesper Makholm Byskov. Enumerating maximal independent sets with applications to graph colouring. Oper. Res. Lett., 32(6):547–556, 2004.
- Approximate proof-labeling schemes. Theor. Comput. Sci., 811:112–124, 2020.
- A self-stabilizing algorithm for maximal matching in anonymous networks. Parallel Process. Lett., 26(4):1650016:1–1650016:17, 2016.
- On the chromatic number of random regular graphs. J. Comb. Theory, Ser. B, 116:367–439, 2016.
- Reducing linear hadwiger’s conjecture to coloring small graphs. CoRR, abs/2108.01633, 2021.
- Twenty-two new approximate proof labeling schemes. In 34th International Symposium on Distributed Computing, DISC 2020, volume 179, pages 20:1–20:14, 2020.
- P Erdős and A Rényi. On the existence of a factor of degree one of a connected random graph. Acta Mathematica Hungarica, 17(3-4):359–368, 1966.
- Paul Erdös. Graph theory and probability. Canadian Journal of Mathematics, 11:34–38, 1959.
- Laurent Feuilloley. Introduction to local certification. Discret. Math. Theor. Comput. Sci., 23(3), 2021.
- Redundancy in distributed proofs. Distributed Comput., 34(2):113–132, 2021.
- Self-stabilizing leader election in networks of finite-state anonymous agents. In Alexander A. Shvartsman, editor, Principles of Distributed Systems, 10th International Conference, OPODIS 2006, volume 4305, pages 395–409, 2006.
- Explicit space-time tradeoffs for proof labeling schemes in graphs with small separators. In 25th International Conference on Principles of Distributed Systems, OPODIS 2021, volume 217 of LIPIcs, pages 21:1–21:22, 2021.
- Distributed certification for classes of dense graphs. CoRR, abs/2307.14292, 2023.
- A meta-theorem for distributed certification. In Structural Information and Communication Complexity - 29th International Colloquium, SIROCCO 2022, volume 13298, pages 116–134, 2022.
- Locally checkable proofs in distributed computing. Theory Comput., 12(1):1–33, 2016.
- Proof labeling schemes. Distributed Comput., 22(4):215–233, 2010.
- Lower bound for constant-size local certification. In Stabilization, Safety, and Security of Distributed Systems - 24th International Symposium, SSS 2022, volume 13751, pages 239–253, 2022.
- Moshe Morgenstern. Existence and explicit constructions of q + 1 regular ramanujan graphs for every prime power q. J. Comb. Theory, Ser. B, 62(1):44–62, 1994.
- Space-time tradeoffs for distributed verification. In Structural Information and Communication Complexity - 24th International Colloquium, SIROCCO 2017, volume 10641, pages 53–70, 2017.
- Jukka Suomela. Using round elimination to understand locality. SIGACT News, 51(3):63–81, 2020.
- Nicolas Trotignon. Perfect graphs: a survey. CoRR, abs/1301.5149, 2013.
- Jonathan S. Turner. Almost all k-colorable graphs are easy to color. J. Algorithms, 9(1):63–82, 1988.