Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Free Space Optical Integrated Sensing and Communication Based on DCO-OFDM: Performance Metrics and Resource Allocation (2312.13654v1)

Published 21 Dec 2023 in cs.IT, eess.SP, math.IT, and math.OC

Abstract: As one of the six usage scenarios of the sixth generation (6G) mobile communication system, integrated sensing and communication (ISAC) has garnered considerable attention, and numerous studies have been conducted on radio-frequency (RF)-ISAC. Benefitting from the communication and sensing capabilities of an optical system, free space optical (FSO)-ISAC becomes a potential complement to RF-ISAC. In this paper, a direct-current-biased optical orthogonal frequency division multiplexing (DCO-OFDM) scheme is proposed for FSO-ISAC. To derive the spectral efficiency for communication and the Fisher information for sensing as performance metrics, we model the clipping noise of DCO-OFDM as additive colored Gaussian noise to obtain the expression of the signal-to-noise ratio. Based on the derived performance metrics, joint power allocation problems are formulated for both communication-centric and sensing-centric scenarios. In addition, the non-convex joint optimization problems are decomposed into sub-problems for DC bias and subcarriers, which can be solved by block coordinate descent algorithms. Furthermore, numerical simulations demonstrate the proposed algorithms and reveal the trade-off between communication and sensing functionalities of the OFDM-based FSO-ISAC system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (40)
  1. Y. Wen, F. Yang, J. Song, and Z. Han, “Power allocation for OFDM-based free space optical integrated sensing and communication,” submitted to ICC 2024.
  2. F. Liu, Y. Cui, C. Masouros, J. Xu, T. X. Han, Y. C. Eldar, and S. Buzzi, “Integrated sensing and communications: toward dual-functional wireless networks for 6G and beyond,” IEEE J. Sel. Areas Commun., vol. 40, no. 6, pp. 1728–1767, Jun. 2022.
  3. A. R. Chiriyath, B. Paul, and D. W. Bliss, “Radar-communications convergence: coexistence, cooperation, and co-design,” IEEE Trans. on Cogn. Commun. Netw., vol. 3, no. 1, pp. 1–12, Feb. 2017.
  4. Y. Cui, F. Liu, X. Jing, and J. Mu, “Integrating sensing and communications for ubiquitous IoT: applications, trends, and challenges,” IEEE Netw., vol. 35, no. 5, pp. 158–167, Nov. 2021.
  5. D. Ma, N. Shlezinger, T. Huang, Y. Liu, and Y. C. Eldar, “Joint radar-communication strategies for autonomous vehicles: combining two key automotive technologies,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 85–97, Jun. 2020.
  6. M.-E. Chatzitheodoridi, A. Taylor, O. Rabaste, and H. Oriot, “A cooperative SAR-communication system using continuous phase modulation codes and mismatched filters,” IEEE Trans. Geosci. Remote Sens., vol. 61, pp. 1–14, Dec. 2023.
  7. J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph., vol. 35, no. 4, pp. 1–19, Jul. 2016.
  8. Y. Zhang, Q. Li, L. Huang, C. Pan, and J. Song, “A modified waveform design for radar-communication integration based on LFM-CPM,” in Proc. IEEE 85th Veh. Technol. Conf., Sydney, NSW, Australia, Jun. 2017, pp. 1–5.
  9. Z. Wei, H. Qu, Y. Wang, X. Yuan, H. Wu, Y. Du, K. Han, N. Zhang, and Z. Feng, “Integrated sensing and communication signals toward 5G-A and 6G: a survey,” IEEE Internet Things J., vol. 10, no. 13, pp. 11 068–11 092, Jan. 2023.
  10. F. Peng, Z. Jiang, S. Zhou, Z. Niu, and S. Zhang, “Sensing and communication co-design for status update in multiaccess wireless networks,” IEEE Trans. Mobile Comput., vol. 22, no. 3, pp. 1779–1792, Aug. 2021.
  11. Z. Wang, K. Han, X. Shen, W. Yuan, and F. Liu, “Achieving the performance bounds for sensing and communications in perceptive networks: optimal bandwidth allocation,” IEEE Wireless Commun. Lett., vol. 11, no. 9, pp. 1835–1839, Sep. 2022.
  12. L. Zhao, D. Wu, L. Zhou, and Y. Qian, “Radio resource allocation for integrated sensing, communication, and computation networks,” IEEE Trans. Wireless Commun., vol. 21, no. 10, pp. 8675–8687, Apr. 2022.
  13. A. R. Chiriyath, B. Paul, G. M. Jacyna, and D. W. Bliss, “Inner bounds on performance of radar and communications co-existence,” IEEE Trans. Signal Process., vol. 64, no. 2, pp. 464–474, Sep. 2015.
  14. M. A. Khalighi and M. Uysal, “Survey on free space optical communication: a communication theory perspective,” IEEE Commun. Surveys Tuts., vol. 16, no. 4, pp. 2231–2258, Jun. 2014.
  15. Y. Li and J. Ibanez-Guzman, “Lidar for autonomous driving: the principles, challenges, and trends for automotive lidar and perception systems,” IEEE Signal Process. Mag., vol. 37, no. 4, pp. 50–61, Jun. 2020.
  16. S. A. Al-Gailani, M. F. Mohd Salleh, A. A. Salem, R. Q. Shaddad, U. U. Sheikh, N. A. Algeelani, and T. A. Almohamad, “A survey of free space optics (FSO) communication systems, links, and networks,” IEEE Access, vol. 9, pp. 7353–7373, Dec. 2021.
  17. H. Liu, R. Liao, Z. Wei, Z. Hou, and Y. Qiao, “BER analysis of a hybrid modulation scheme based on PPM and MSK subcarrier intensity modulation,” IEEE Photon. J., vol. 7, no. 4, pp. 1–10, Jun. 2015.
  18. S. E.-D. N. Mohamed, A. E.-N. A. Mohamed, F. E. A. El-Samie, and A. N. Z. Rashed, “Performance enhancement of IM/DD optical wireless systems,” Photon. Netw. Commun., vol. 36, pp. 114–127, Apr. 2018.
  19. A. J. Suzuki and K. Mizui, “Laser radar and visible light in a bidirectional V2V communication and ranging system,” in Proc. IEEE Int. Conf. Veh. Electron. Saf., Yokohama, Japan, Nov. 2015, pp. 19–24.
  20. Y. Wen, F. Yang, J. Song, and Z. Han, “Pulse sequence sensing and pulse position modulation for optical integrated sensing and communication,” IEEE Commun. Lett., vol. 27, no. 6, pp. 1525–1529, Apr. 2023.
  21. M. Cao, Y. Wang, Y. Zhang, D. Gao, and H. Zhou, “A unified waveform for optical wireless integrated sensing and communication,” in Asia Communications and Photonics Conference, Shenzhen, China, Nov. 2022, pp. 448–452.
  22. Z. Xu, K. Chen, X. Sun, K. Zhang, Y. Wang, J. Deng, and S. Pan, “Frequency-modulated continuous-wave coherent lidar with downlink communications capability,” IEEE Photon. Technol. Lett., vol. 32, no. 11, pp. 655–658, Apr. 2020.
  23. Y. Hai, Y. Luo, C. Liu, and A. Dang, “Remote phase-shift LiDAR with communication,” IEEE Trans. Commun., vol. 71, no. 2, pp. 1059–1070, Jan. 2023.
  24. C. Baquero Barneto, T. Riihonen, M. Turunen, L. Anttila, M. Fleischer, K. Stadius, J. Ryynänen, and M. Valkama, “Full-duplex OFDM radar with LTE and 5G NR waveforms: challenges, solutions, and measurements,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 10, pp. 4042–4054, Aug. 2019.
  25. C. Sturm, T. Zwick, and W. Wiesbeck, “An OFDM system concept for joint radar and communications operations,” in Proc. IEEE 69th Veh. Technol. Conf., Barcelona, Spain, Apr. 2009, pp. 1–5.
  26. C. Sturm and W. Wiesbeck, “Waveform design and signal processing aspects for fusion of wireless communications and radar sensing,” Proc. IEEE, vol. 99, no. 7, pp. 1236–1259, Jul. 2011.
  27. S. D. Liyanaarachchi, T. Riihonen, C. B. Barneto, and M. Valkama, “Optimized waveforms for 5G-6G communication with sensing: theory, simulations and experiments,” IEEE Trans. Wireless Commun., vol. 20, no. 12, pp. 8301–8315, Dec. 2021.
  28. Y. Liu, G. Liao, J. Xu, Z. Yang, and Y. Zhang, “Adaptive OFDM integrated radar and communications waveform design based on information theory,” IEEE Commun. Lett., vol. 21, no. 10, pp. 2174–2177, Jul. 2017.
  29. J. Zhu, Y. Cui, J. Mu, L. Hu, and X. Jing, “Power minimization strategy based subcarrier allocation and power assignment for integrated sensing and communication,” in Proc. IEEE Wireless Commun. Netw. Conf., Glasgow, UK, Mar. 2023, pp. 1–6.
  30. C. Shi, F. Wang, M. Sellathurai, J. Zhou, and S. Salous, “Power minimization-based robust OFDM radar waveform design for radar and communication systems in coexistence,” IEEE Trans. Signal Process., vol. 66, no. 5, pp. 1316–1330, Nov. 2018.
  31. S. D. Dissanayake and J. Armstrong, “Comparison of ACO-OFDM, DCO-OFDM and ADO-OFDM in IM/DD systems,” J. Lightw. Technol., vol. 31, no. 7, pp. 1063–1072, Jan. 2013.
  32. X. Huang, F. Yang, X. Liu, H. Zhang, J. Ye, and J. Song, “Subcarrier and power allocations for dimmable enhanced ADO-OFDM with iterative interference cancellation,” IEEE Access, vol. 7, pp. 28 422–28 435, Feb. 2019.
  33. J. Tan, Z. Wang, Q. Wang, and L. Dai, “Near-optimal low-complexity sequence detection for clipped DCO-OFDM,” IEEE Photon. Technol. Lett., vol. 28, no. 3, pp. 233–236, Oct. 2016.
  34. A. Marmin, A. Jezierska, M. Castella, and J.-C. Pesquet, “Global optimization for recovery of clipped signals corrupted with poisson-gaussian noise,” IEEE Signal Process. Lett., vol. 27, pp. 970–974, May 2020.
  35. S. Dimitrov, S. Sinanovic, and H. Haas, “Clipping noise in OFDM-based optical wireless communication systems,” IEEE Trans. Commun., vol. 60, no. 4, pp. 1072–1081, Mar. 2012.
  36. Z. Jiang, C. Gong, and Z. Xu, “Clipping noise and power allocation for OFDM-based optical wireless communication using photon detection,” IEEE Wireless Commun. Lett., vol. 8, no. 1, pp. 237–240, Aug. 2019.
  37. R. Nebuloni and E. Verdugo, “FSO path loss model based on the visibility,” IEEE Photon. J., vol. 14, no. 2, pp. 1–9, Feb. 2022.
  38. K. Sharma and S. K. Grewal, “Capacity analysis of free space optical communication system under atmospheric turbulence,” Opt. Quant. Electron., vol. 52, no. 2, p. 82, Jan. 2020.
  39. J. Bussgang, “Cross correlation function of amplitude-distorted Gaussian signals,” Research Laboratory for Electronics, Massachusetts Institute of Technology, Cambridge, MA, Tech. Rep., Mar. 1952, technical Report 216.
  40. R. Price, “A useful theorem for nonlinear devices having Gaussian inputs,” IEEE Trans. Inf. Theory, vol. 4, no. 2, pp. 69–72, Jun. 1958.

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com