Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Empowering Few-Shot Recommender Systems with Large Language Models -- Enhanced Representations (2312.13557v1)

Published 21 Dec 2023 in cs.IR and cs.AI

Abstract: Recommender systems utilizing explicit feedback have witnessed significant advancements and widespread applications over the past years. However, generating recommendations in few-shot scenarios remains a persistent challenge. Recently, LLMs have emerged as a promising solution for addressing NLP tasks, thereby offering novel insights into tackling the few-shot scenarios encountered by explicit feedback-based recommender systems. To bridge recommender systems and LLMs, we devise a prompting template that generates user and item representations based on explicit feedback. Subsequently, we integrate these LLM-processed representations into various recommendation models to evaluate their significance across diverse recommendation tasks. Our ablation experiments and case study analysis collectively demonstrate the effectiveness of LLMs in processing explicit feedback, highlighting that LLMs equipped with generative and logical reasoning capabilities can effectively serve as a component of recommender systems to enhance their performance in few-shot scenarios. Furthermore, the broad adaptability of LLMs augments the generalization potential of recommender models, despite certain inherent constraints. We anticipate that our study can inspire researchers to delve deeper into the multifaceted dimensions of LLMs' involvement in recommender systems and contribute to the advancement of the explicit feedback-based recommender systems field.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (51)
  1. L. Mocean and C. M. Pop, “Marketing recommender systems: a new approach in digital economy,” Informatica Economica, vol. 16, no. 4, p. 142, 2012.
  2. J. Bobadilla, S. Alonso, and A. Hernando, “Deep learning architecture for collaborative filtering recommender systems,” Applied Sciences, vol. 10, no. 7, p. 2441, 2020.
  3. F. Rezaimehr and C. Dadkhah, “A survey of attack detection approaches in collaborative filtering recommender systems,” Artificial Intelligence Review, vol. 54, pp. 2011–2066, 2021.
  4. S. Zhang, L. Yao, A. Sun, and Y. Tay, “Deep learning based recommender system: A survey and new perspectives,” ACM computing surveys (CSUR), vol. 52, no. 1, pp. 1–38, 2019.
  5. F. Cena, L. Console, and F. Vernero, “Logical foundations of knowledge-based recommender systems: A unifying spectrum of alternatives,” Information Sciences, vol. 546, pp. 60–73, 2021.
  6. M. Dong, X. Zeng, L. Koehl, and J. Zhang, “An interactive knowledge-based recommender system for fashion product design in the big data environment,” Information Sciences, vol. 540, pp. 469–488, 2020.
  7. P. M. Alamdari, N. J. Navimipour, M. Hosseinzadeh, A. A. Safaei, and A. Darwesh, “A systematic study on the recommender systems in the e-commerce,” Ieee Access, vol. 8, pp. 115 694–115 716, 2020.
  8. D. Mittal, S. Shandilya, D. Khirwar, and A. Bhise, “Smart billing using content-based recommender systems based on fingerprint,” in ICT Analysis and Applications: Proceedings of ICT4SD 2019, Volume 2.   Springer, 2020, pp. 85–93.
  9. Y. Pérez-Almaguer, R. Yera, A. A. Alzahrani, and L. Martínez, “Content-based group recommender systems: A general taxonomy and further improvements,” Expert Systems with Applications, vol. 184, p. 115444, 2021.
  10. A. Ansari, S. Essegaier, and R. Kohli, “Internet recommendation systems,” 2000.
  11. A. V. Bodapati, “Recommendation systems with purchase data,” Journal of marketing research, vol. 45, no. 1, pp. 77–93, 2008.
  12. T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry, A. Askell et al., “Language models are few-shot learners,” Advances in neural information processing systems, vol. 33, pp. 1877–1901, 2020.
  13. H. Dai, Z. Liu, W. Liao, X. Huang, Z. Wu, L. Zhao, W. Liu, N. Liu, S. Li, D. Zhu et al., “Chataug: Leveraging chatgpt for text data augmentation,” arXiv preprint arXiv:2302.13007, 2023.
  14. J. Liu, C. Liu, R. Lv, K. Zhou, and Y. Zhang, “Is chatgpt a good recommender? a preliminary study,” arXiv preprint arXiv:2304.10149, 2023.
  15. D. Di Palma, G. M. Biancofiore, V. W. Anelli, F. Narducci, T. Di Noia, and E. Di Sciascio, “Evaluating chatgpt as a recommender system: A rigorous approach,” arXiv preprint arXiv:2309.03613, 2023.
  16. Y. Gao, T. Sheng, Y. Xiang, Y. Xiong, H. Wang, and J. Zhang, “Chat-rec: Towards interactive and explainable llms-augmented recommender system,” arXiv preprint arXiv:2303.14524, 2023.
  17. Z. Kefato, S. Girdzijauskas, N. Sheikh, and A. Montresor, “Dynamic embeddings for interaction prediction,” in Proceedings of the Web Conference 2021, 2021, pp. 1609–1618.
  18. J. A. Konstan and J. Riedl, “Recommender systems: from algorithms to user experience,” User modeling and user-adapted interaction, vol. 22, pp. 101–123, 2012.
  19. Q. Zhao, F. M. Harper, G. Adomavicius, and J. A. Konstan, “Explicit or implicit feedback? engagement or satisfaction? a field experiment on machine-learning-based recommender systems,” in Proceedings of the 33rd Annual ACM Symposium on Applied Computing, 2018, pp. 1331–1340.
  20. S.-Y. Liu, H. H. Chen, C.-M. Chen, M.-F. Tsai, and C.-J. Wang, “Ipr: Interaction-level preference ranking for explicit feedback,” in Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval, 2022, pp. 1912–1916.
  21. N. N. Liu, E. W. Xiang, M. Zhao, and Q. Yang, “Unifying explicit and implicit feedback for collaborative filtering,” in Proceedings of the 19th ACM international conference on Information and knowledge management, 2010, pp. 1445–1448.
  22. G. Jawaheer, M. Szomszor, and P. Kostkova, “Comparison of implicit and explicit feedback from an online music recommendation service,” in proceedings of the 1st international workshop on information heterogeneity and fusion in recommender systems, 2010, pp. 47–51.
  23. Y. Betancourt and S. Ilarri, “Use of text mining techniques for recommender systems.” in ICEIS (1), 2020, pp. 780–787.
  24. D. Miao and F. Lang, “A recommendation system based on text mining,” in 2017 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC).   IEEE, 2017, pp. 318–321.
  25. K. Chen, T. Chen, G. Zheng, O. Jin, E. Yao, and Y. Yu, “Collaborative personalized tweet recommendation,” in Proceedings of the 35th international ACM SIGIR conference on Research and development in information retrieval, 2012, pp. 661–670.
  26. S. Loh, F. Lorenzi, R. Saldaña, and D. Licthnow, “A tourism recommender system based on collaboration and text analysis,” Information Technology & Tourism, vol. 6, no. 3, pp. 157–165, 2003.
  27. R. L. Rosa, G. M. Schwartz, W. V. Ruggiero, and D. Z. Rodríguez, “A knowledge-based recommendation system that includes sentiment analysis and deep learning,” IEEE Transactions on Industrial Informatics, vol. 15, no. 4, pp. 2124–2135, 2018.
  28. R. Krestel, P. Fankhauser, and W. Nejdl, “Latent dirichlet allocation for tag recommendation,” in Proceedings of the third ACM conference on Recommender systems, 2009, pp. 61–68.
  29. N. Jakob, S. H. Weber, M. C. Müller, and I. Gurevych, “Beyond the stars: exploiting free-text user reviews to improve the accuracy of movie recommendations,” in Proceedings of the 1st international CIKM workshop on Topic-sentiment analysis for mass opinion, 2009, pp. 57–64.
  30. Y. Li, J. Nie, Y. Zhang, B. Wang, B. Yan, and F. Weng, “Contextual recommendation based on text mining,” in Coling 2010: Posters, 2010, pp. 692–700.
  31. W. Fan, Z. Zhao, J. Li, Y. Liu, X. Mei, Y. Wang, J. Tang, and Q. Li, “Recommender systems in the era of large language models (llms),” arXiv preprint arXiv:2307.02046, 2023.
  32. A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in neural information processing systems, vol. 30, 2017.
  33. C. Chen, M. Zhang, Y. Liu, and S. Ma, “Neural attentional rating regression with review-level explanations,” in Proceedings of the 2018 world wide web conference, 2018, pp. 1583–1592.
  34. Y. Lu, R. Dong, and B. Smyth, “Coevolutionary recommendation model: Mutual learning between ratings and reviews,” in Proceedings of the 2018 World Wide Web Conference, 2018, pp. 773–782.
  35. Y. Tay, A. T. Luu, and S. C. Hui, “Multi-pointer co-attention networks for recommendation,” in Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, 2018, pp. 2309–2318.
  36. D. Kim, C. Park, J. Oh, S. Lee, and H. Yu, “Convolutional matrix factorization for document context-aware recommendation,” in Proceedings of the 10th ACM conference on recommender systems, 2016, pp. 233–240.
  37. L. Zheng, V. Noroozi, and P. S. Yu, “Joint deep modeling of users and items using reviews for recommendation,” in Proceedings of the tenth ACM international conference on web search and data mining, 2017, pp. 425–434.
  38. R. OpenAI, “Gpt-4 technical report. arxiv 2303.08774,” View in Article, vol. 2, p. 13, 2023.
  39. M. Remountakis, K. Kotis, B. Kourtzis, and G. E. Tsekouras, “Using chatgpt and persuasive technology for personalized recommendation messages in hotel upselling,” Information, vol. 14, no. 9, p. 504, 2023.
  40. D. Di Palma, “Retrieval-augmented recommender system: Enhancing recommender systems with large language models,” in Proceedings of the 17th ACM Conference on Recommender Systems, 2023, pp. 1369–1373.
  41. P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language processing,” ACM Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.
  42. Y. Cui, W. Che, T. Liu, B. Qin, S. Wang, and G. Hu, “Revisiting pre-trained models for chinese natural language processing,” arXiv preprint arXiv:2004.13922, 2020.
  43. Y. Song, S. Shi, J. Li, and H. Zhang, “Directional skip-gram: Explicitly distinguishing left and right context for word embeddings,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 2 (Short Papers), 2018, pp. 175–180.
  44. D. Verma and S. Muralikrishna, “Semantic similarity between short paragraphs using deep learning,” in 2020 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT).   IEEE, 2020, pp. 1–5.
  45. P. Covington, J. Adams, and E. Sargin, “Deep neural networks for youtube recommendations,” in Proceedings of the 10th ACM conference on recommender systems, 2016, pp. 191–198.
  46. H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Corrado, W. Chai, M. Ispir et al., “Wide & deep learning for recommender systems,” in Proceedings of the 1st workshop on deep learning for recommender systems, 2016, pp. 7–10.
  47. Y. Kim, “Convolutional neural networks for sentence classification,” arXiv preprint arXiv:1408.5882, 2014.
  48. S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme, “Bpr: Bayesian personalized ranking from implicit feedback,” arXiv preprint arXiv:1205.2618, 2012.
  49. X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua, “Neural collaborative filtering,” in Proceedings of the 26th international conference on world wide web, 2017, pp. 173–182.
  50. D. Liu, Y. Gao, and Y. Xu, “Douban moviedata,” http://moviedata.csuldw.com/ or https://github.com/csuldw/AntSpider, 2019.
  51. F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” Acm transactions on interactive intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Zhoumeng Wang (1 paper)
Citations (2)

Summary

We haven't generated a summary for this paper yet.