Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Task Planning for Multiple Item Insertion using ADMM (2312.13472v1)

Published 20 Dec 2023 in math.OC and cs.RO

Abstract: Mixed-integer nonlinear programmings (MINLPs) are powerful formulation tools for task planning. However, it suffers from long solving time especially for large scale problems. In this work, we first formulate the task planning problem for item stowing into a mixed-integer nonlinear programming problem, then solve it using Alternative Direction Method of Multipliers (ADMM). ADMM separates the complete formulation into a nonlinear programming problem and mixed-integer programming problem, then iterate between them to solve the original problem. We show that our ADMM converges better than non-warm-started nonlinear complementary formulation. Our proposed methods are demonstrated on hardware as a high level planner to insert books into the bookshelf.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. R. Deits and R. Tedrake, “Footstep planning on uneven terrain with mixed-integer convex optimization,” in 2014 IEEE-RAS international conference on humanoid robots.   IEEE, 2014, pp. 279–286.
  2. X. Lin, J. Zhang, J. Shen, G. Fernandez, and D. W. Hong, “Optimization based motion planning for multi-limbed vertical climbing robots,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 1918–1925.
  3. H. Dai, G. Izatt, and R. Tedrake, “Global inverse kinematics via mixed-integer convex optimization,” The International Journal of Robotics Research, vol. 38, no. 12-13, pp. 1420–1441, 2019.
  4. H. Dai, A. Valenzuela, and R. Tedrake, “Whole-body motion planning with centroidal dynamics and full kinematics,” in IEEE RAS Int. Conf. on Humanoid Robots, 2014.
  5. A. W. Winkler, C. D. Bellicoso, M. Hutter, and J. Buchli, “Gait and trajectory optimization for legged systems through phase-based end-effector parameterization,” IEEE Robotics and Automation Letters, vol. 3, no. 3, pp. 1560–1567, 2018.
  6. P. Abichandani, S. Torabi, S. Basu, and H. Benson, “Mixed integer nonlinear programming framework for fixed path coordination of multiple underwater vehicles under acoustic communication constraints,” IEEE Journal of Oceanic Engineering, vol. 40, no. 4, pp. 864–873, 2015.
  7. T. Wang, R. M. Lima, L. Giraldi, and O. M. Knio, “Trajectory planning for autonomous underwater vehicles in the presence of obstacles and a nonlinear flow field using mixed integer nonlinear programming,” Computers & Operations Research, vol. 101, pp. 55–75, 2019.
  8. Y.-H. Shin, S. Hong, S. Woo, J. Choe, H. Son, G. Kim, J.-H. Kim, K. Lee, J. Hwangbo, and H.-W. Park, “Design of kaist hound, a quadruped robot platform for fast and efficient locomotion with mixed-integer nonlinear optimization of a gear train,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 6614–6620.
  9. X. Lin and D. W. Hong, “Convexity of stiffness matrix eigenvalues for a position controlled limb of mobile climbing robots,” in 2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids).   IEEE, 2016, pp. 1161–1166.
  10. X. Lin, H. Krishnan, Y. Su, and D. W. Hong, “Multi-limbed robot vertical two wall climbing based on static indeterminacy modeling and feasibility region analysis,” in 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2018, pp. 4355–4362.
  11. X. Lin and D. Hong, “Formulation of posture optimization for multi-legged robot via eigen decomposition of stiffness matrix,” in 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI).   IEEE, 2016, pp. 104–108.
  12. S. Boyd and J. Mattingley, “Branch and bound methods,” Notes for EE364b, Stanford University, pp. 2006–07, 2007.
  13. J. Tordesillas, B. T. Lopez, and J. P. How, “Faster: Fast and safe trajectory planner for flights in unknown environments,” in 2019 IEEE/RSJ international conference on intelligent robots and systems (IROS).   IEEE, 2019, pp. 1934–1940.
  14. X. Lin, M. S. Ahn, and D. Hong, “Designing multi-stage coupled convex programming with data-driven mccormick envelope relaxations for motion planning,” in 2021 IEEE/RSJ International Conference on Robotics and Automation (ICRA).   IEEE, 2021.
  15. X. Lin, G. I. Fernandez, Y. Liu, T. Zhu, Y. Shirai, and D. Hong, “Multi-modal multi-agent optimization for limms, a modular robotics approach to delivery automation,” in 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2022, pp. 12 674–12 681.
  16. V. Nair, S. Bartunov, F. Gimeno, I. von Glehn, P. Lichocki, I. Lobov, B. O’Donoghue, N. Sonnerat, C. Tjandraatmadja, P. Wang et al., “Solving mixed integer programs using neural networks,” arXiv preprint arXiv:2012.13349, 2020.
  17. Y. Tang, S. Agrawal, and Y. Faenza, “Reinforcement learning for integer programming: Learning to cut,” in Int. Conf. on Machine Learning, 2020.
  18. J.-J. Zhu and G. Martius, “Fast non-parametric learning to accelerate mixed-integer programming for hybrid model predictive control,” IFAC-Papers Online, vol. 53, no. 2, pp. 5239 – 5245, 2020.
  19. A. Cauligi, P. Culbertson, E. Schmerling, M. Schwager, B. Stellato, and M. Pavone, “CoCo: Online mixed-integer control via supervised learning,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 1447–1454, 2022.
  20. X. Lin, G. I. Fernandez, and D. W. Hong, “Reduce: Reformulation of mixed integer programs using data from unsupervised clusters for learning efficient strategies,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 4459–4465.
  21. ——, “Benchmark results for bookshelf organization problem as mixed integer nonlinear program with mode switch and collision avoidance,” arXiv preprint arXiv:2208.13158, 2022.
  22. S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein et al., “Distributed optimization and statistical learning via the alternating direction method of multipliers,” Foundations and Trends® in Machine learning, vol. 3, no. 1, pp. 1–122, 2011.
  23. A. Aydinoglu and M. Posa, “Real-time multi-contact model predictive control via admm,” in 2022 International Conference on Robotics and Automation (ICRA).   IEEE, 2022, pp. 3414–3421.
  24. Y. Shirai, X. Lin, A. Schperberg, Y. Tanaka, H. Kato, V. Vichathorn, and D. Hong, “Simultaneous contact-rich grasping and locomotion via distributed optimization enabling free-climbing for multi-limbed robots,” arXiv preprint arXiv:2207.01418, 2022.
  25. B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “Osqp: An operator splitting solver for quadratic programs,” Mathematical Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.
  26. H. Marchand, A. Martin, R. Weismantel, and L. Wolsey, “Cutting planes in integer and mixed integer,” Discrete Optimization: The State of the Art, vol. 11, p. 397, 2003.
  27. X. Lin, F. Xu, A. Schperberg, and D. Hong, “Learning near-global-optimal strategies for hybrid non-convex model predictive control of single rigid body locomotion,” arXiv preprint arXiv:2207.07846, 2022.
  28. M. Anitescu and F. A. Potra, “Formulating dynamic multi-rigid-body contact problems with friction as solvable linear complementarity problems,” Nonlinear Dynamics, vol. 14, no. 3, pp. 231–247, 1997.
  29. E. Drumwright, “Rapidly computable viscous friction and no-slip rigid contact models,” arXiv preprint arXiv:1504.00719, 2015.
  30. M. Kojima, N. Megiddo, T. Noma, and A. Yoshise, “A unified approach to interior point algorithms for linear complementarity problems: A summary,” Operations Research Letters, vol. 10, no. 5, pp. 247–254, 1991.
  31. M. Posa, C. Cantu, and R. Tedrake, “A direct method for trajectory optimization of rigid bodies through contact,” Int. Journal of Robotics Research, vol. 33, no. 1, pp. 69–81, 2014.
  32. J. Zhang, X. Lin, and D. W. Hong, “Transition motion planning for multi-limbed vertical climbing robots using complementarity constraints,” in 2021 IEEE International Conference on Robotics and Automation (ICRA).   IEEE, 2021, pp. 2033–2039.
  33. S. L. Cleac’h, T. Howell, M. Schwager, and Z. Manchester, “Fast contact-implicit model-predictive control,” arXiv preprint arXiv:2107.05616, 2021.
  34. J. Park and S. Boyd, “A semidefinite programming method for integer convex quadratic minimization,” Optimization Letters, vol. 12, no. 3, pp. 499–518, 2018.
  35. M. Posa, M. Tobenkin, and R. Tedrake, “Stability analysis and control of rigid-body systems with impacts and friction,” IEEE Transactions on Automatic Control, vol. 61, no. 6, pp. 1423–1437, 2015.
  36. P. Bonami and J. Lee, “Bonmin user’s manual,” Numer Math, vol. 4, pp. 1–32, 2007.
  37. B. Er-Rahmadi and T. Ma, “Data-driven mixed-integer linear programming-based optimisation for efficient failure detection in large-scale distributed systems,” European Journal of Operational Research, vol. 303, no. 1, pp. 337–353, 2022.
  38. R. Fletcher* and S. Leyffer, “Solving mathematical programs with complementarity constraints as nonlinear programs,” Optimization Methods and Software, vol. 19, no. 1, pp. 15–40, 2004.
  39. X. Lin and D. W. Hong, “Developing data-driven methods for mixed-integer nonlinear programs.”

Summary

We haven't generated a summary for this paper yet.