Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A General Model for Aggregating Annotations Across Simple, Complex, and Multi-Object Annotation Tasks (2312.13437v1)

Published 20 Dec 2023 in cs.LG and cs.CL

Abstract: Human annotations are vital to supervised learning, yet annotators often disagree on the correct label, especially as annotation tasks increase in complexity. A strategy to improve label quality is to ask multiple annotators to label the same item and aggregate their labels. Many aggregation models have been proposed for categorical or numerical annotation tasks, but far less work has considered more complex annotation tasks involving open-ended, multivariate, or structured responses. While a variety of bespoke models have been proposed for specific tasks, our work is the first to introduce aggregation methods that generalize across many diverse complex tasks, including sequence labeling, translation, syntactic parsing, ranking, bounding boxes, and keypoints. This generality is achieved by devising a task-agnostic method to model distances between labels rather than the labels themselves. This article extends our prior work with investigation of three new research questions. First, how do complex annotation properties impact aggregation accuracy? Second, how should a task owner navigate the many modeling choices to maximize aggregation accuracy? Finally, what diagnoses can verify that aggregation models are specified correctly for the given data? To understand how various factors impact accuracy and to inform model selection, we conduct simulation studies and experiments on real, complex datasets. Regarding testing, we introduce unit tests for aggregation models and present a suite of such tests to ensure that a given model is not mis-specified and exhibits expected behavior. Beyond investigating these research questions above, we discuss the foundational concept of annotation complexity, present a new aggregation model as a bridge between traditional models and our own, and contribute a new semi-supervised learning method for complex label aggregation that outperforms prior work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Alexander Braylan (3 papers)
  2. Madalyn Marabella (1 paper)
  3. Omar Alonso (12 papers)
  4. Matthew Lease (57 papers)
Citations (2)