Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extremal polynomials and polynomial preimages (2312.12992v1)

Published 20 Dec 2023 in math.CA and math.CV

Abstract: This article examines the asymptotic behavior of the Widom factors, denoted $\mathcal{W}_n$, for Chebyshev polynomials of finite unions of Jordan arcs. We prove that, in contrast to Widom's proposal, when dealing with a single smooth Jordan arc, $\mathcal{W}_n$ converges to 2 exclusively when the arc is a straight line segment. Our main focus is on analysing polynomial preimages of the interval $[-2,2]$, and we provide a complete description of the asymptotic behavior of $\mathcal{W}_n$ for symmetric star graphs and quadratic preimages of $[-2,2]$. We observe that in the case of star graphs, the Chebyshev polynomials and the polynomials orthogonal with respect to equilibrium measure share the same norm asymptotics, suggesting a potential extension of a conjecture posed by Christiansen, Simon and Zinchenko. Lastly, we propose a possible connection between the $S$-property and Widom factors converging to $2$.

Citations (2)

Summary

We haven't generated a summary for this paper yet.