Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
99 tokens/sec
Gemini 2.5 Pro Premium
56 tokens/sec
GPT-5 Medium
26 tokens/sec
GPT-5 High Premium
20 tokens/sec
GPT-4o
106 tokens/sec
DeepSeek R1 via Azure Premium
99 tokens/sec
GPT OSS 120B via Groq Premium
507 tokens/sec
Kimi K2 via Groq Premium
213 tokens/sec
2000 character limit reached

Benchmarking and Analyzing In-context Learning, Fine-tuning and Supervised Learning for Biomedical Knowledge Curation: a focused study on chemical entities of biological interest (2312.12989v1)

Published 20 Dec 2023 in cs.LG, cs.CL, and q-bio.QM

Abstract: Automated knowledge curation for biomedical ontologies is key to ensure that they remain comprehensive, high-quality and up-to-date. In the era of foundational LLMs, this study compares and analyzes three NLP paradigms for curation tasks: in-context learning (ICL), fine-tuning (FT), and supervised learning (ML). Using the Chemical Entities of Biological Interest (ChEBI) database as a model ontology, three curation tasks were devised. For ICL, three prompting strategies were employed with GPT-4, GPT-3.5, BioGPT. PubmedBERT was chosen for the FT paradigm. For ML, six embedding models were utilized for training Random Forest and Long-Short Term Memory models. Five setups were designed to assess ML and FT model performance across different data availability scenarios.Datasets for curation tasks included: task 1 (620,386), task 2 (611,430), and task 3 (617,381), maintaining a 50:50 positive versus negative ratio. For ICL models, GPT-4 achieved best accuracy scores of 0.916, 0.766 and 0.874 for tasks 1-3 respectively. In a direct comparison, ML (trained on ~260,000 triples) outperformed ICL in accuracy across all tasks. (accuracy differences: +.11, +.22 and +.17). Fine-tuned PubmedBERT performed similarly to leading ML models in tasks 1 & 2 (F1 differences: -.014 and +.002), but worse in task 3 (-.048). Simulations revealed performance declines in both ML and FT models with smaller and higher imbalanced training data. where ICL (particularly GPT-4) excelled in tasks 1 & 3. GPT-4 excelled in tasks 1 and 3 with less than 6,000 triples, surpassing ML/FT. ICL underperformed ML/FT in task 2.ICL-augmented foundation models can be good assistants for knowledge curation with correct prompting, however, not making ML and FT paradigms obsolete. The latter two require task-specific data to beat ICL. In such cases, ML relies on small pretrained embeddings, minimizing computational demands.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube