Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hardness of linearly ordered 4-colouring of 3-colourable 3-uniform hypergraphs (2312.12981v1)

Published 20 Dec 2023 in cs.CC, math.AT, and math.CO

Abstract: A linearly ordered (LO) $k$-colouring of a hypergraph is a colouring of its vertices with colours $1, \dots, k$ such that each edge contains a unique maximal colour. Deciding whether an input hypergraph admits LO $k$-colouring with a fixed number of colours is NP-complete (and in the special case of graphs, LO colouring coincides with the usual graph colouring). Here, we investigate the complexity of approximating the `linearly ordered chromatic number' of a hypergraph. We prove that the following promise problem is NP-complete: Given a 3-uniform hypergraph, distinguish between the case that it is LO $3$-colourable, and the case that it is not even LO $4$-colourable. We prove this result by a combination of algebraic, topological, and combinatorial methods, building on and extending a topological approach for studying approximate graph colouring introduced by Krokhin, Opr\v{s}al, Wrochna, and \v{Z}ivn\'y (2023).

Citations (6)

Summary

We haven't generated a summary for this paper yet.