Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Factorization and boundedness for representations of locally compact groups on topological vector spaces (2312.12975v1)

Published 20 Dec 2023 in math.FA, math.GN, math.GR, and math.RT

Abstract: We (a) prove that continuous morphisms from locally compact groups to locally exponential (possibly infinite-dimensional) Lie groups factor through Lie quotients, recovering a result of Shtern's on factoring norm-continuous representations on Banach spaces; (b) characterize the maximal almost-periodicity of the identity component $\mathbb{G}_0\le \mathbb{G}$ of a locally compact group in terms of sufficiently discriminating families of continuous functions on $\mathbb{G}$ valued in Hausdorff spaces generalizing an analogous result by Kadison-Singer; (c) apply that characterization to recover the von Neumann kernel of $\mathbb{G}_0$ as the joint kernel of all appropriately bounded and continuous $\mathbb{G}$-representations on topological vector spaces extending KaLLMan's parallel statement for unitary representations, and (d) provide large classes of complete locally convex topological vector spaces (e.g. arbitrary products of Fr\'echet spaces) with the property that compact-group representations thereon whose vectors all have finite-dimensional orbits decompose as finite sums of isotypic components. This last result specializes to one of Hofmann-Morris on representations on products of real lines.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (50)
  1. Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ., 2006(17):1–507, 2006.
  2. Infinite dimensional analysis. A hitchhiker’s guide. Berlin: Springer, 3rd ed. edition, 2006.
  3. Séminaire de géométrie algébrique du Bois-Marie 1963–1964. Théorie des topos et cohomologie étale des schémas. (SGA 4). Un séminaire dirigé par M. Artin, A. Grothendieck, J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne, B. Saint-Donat. Tome 1: Théorie des topos. Exposés I à IV. 2e éd., volume 269 of Lect. Notes Math. Springer, Cham, 1972.
  4. The Stacks Project Authors. Stacks project.
  5. Kazhdan’s property (T), volume 11 of New Mathematical Monographs. Cambridge University Press, Cambridge, 2008.
  6. N. Bourbaki. Elements of mathematics. Topological vector spaces. Chapters 1–5. Transl. from the French by H. G. Eggleston and S. Madan. Berlin: Springer, softcover printing of the 1st English edition of 1987 edition, 2003.
  7. Nicolas Bourbaki. Elements of mathematics. General topology. Part 1. Translation of the French original. Actualites scientifiques et industrielles Hermann. Adiwes International Series in Mathematics. Paris: Hermann, Editeurs des Sciences et des Arts; Reading, Mass. etc.: Addison-Wesley Publishing Company. VII, 436 p. (1966)., 1966.
  8. Nicolas Bourbaki. Elements of mathematics. General topology. Part 2. Translation of the French original. Actualites scientifiques et industrielles Hermann. Adiwes International Series in Mathematics. Paris: Hermann, Editeurs des Sciences et des Arts; Reading, Mass. etc.: Addison-Wesley Publishing Company. IV, 363 p. (1966)., 1966.
  9. Nicolas Bourbaki. Elements of mathematics. Integration II: Chapters 7–9. Transl. from the 1963 and 1969 French originals by Sterling K. Berberian. Berlin: Springer, 2004.
  10. Claude Chevalley. Theory of Lie groups. I, volume 8 of Princeton Math. Ser. Princeton University Press, Princeton, NJ, 1946.
  11. Alexandru Chirvasitu. (Quantum) discreteness, spectrum compactness and uniform continuity, 2023. http://arxiv.org/abs/2310.15139v1.
  12. Jacques Dixmier. C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras. North-Holland Mathematical Library, Vol. 15. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett.
  13. Bernard R. Gelbaum and John M. H. Olmsted. Counterexamples in analysis. Mineola, NY: Dover Publications, corrected reprint of the second (1965) edition edition, 2003.
  14. David Gurarie. Banach uniformly continuous representations of Lie groups and algebras. J. Funct. Anal., 36:401–407, 1980.
  15. P. R. Halmos. Introduction to Hilbert space and the theory of spectral multiplicity. 2nd ed. New York: Chelsea Publishing Company 120 p. (1957)., 1957.
  16. The Lie theory of connected pro-Lie groups. A structure theory for pro-Lie algebras, pro-Lie groups, and connected locally compact groups, volume 2 of EMS Tracts Math. Zürich: European Mathematical Society (EMS), 2007.
  17. The structure of compact groups—a primer for the student—a handbook for the expert, volume 25 of De Gruyter Studies in Mathematics. De Gruyter, Berlin, [2020] ©2020. Fourth edition [of 1646190].
  18. Ter Jenq Huang. A characterization of maximally almost periodic groups. Proc. Amer. Math. Soc., 75(1):59–62, 1979.
  19. Atsushi Inoue. Locally C∗superscript𝐶∗C^{\ast}italic_C start_POSTSUPERSCRIPT ∗ end_POSTSUPERSCRIPT-algebra. Mem. Fac. Sci. Kyushu Univ. Ser. A, 25:197–235, 1971.
  20. Kenkichi Iwasawa. On some types of topological groups. Ann. of Math. (2), 50:507–558, 1949.
  21. Kenkichi Iwasawa. Topological groups with invariant compact neighborhoods of the identity. Ann. Math. (2), 54:345–348, 1951.
  22. Ioan James. Topologies and uniformities. Exp. and rev. version of Topological and uniform spaces, 1987. Springer Undergrad. Math. Ser. London: Springer, exp. and rev. version of Toplogical and uniform spaces, 1987 edition, 1999.
  23. Some remarks on representations of connected groups. Proc. Natl. Acad. Sci. USA, 38:419–423, 1952.
  24. R. R. Kallman. A characterization of uniformly continuous unitary representations of connected locally compact groups. Mich. Math. J., 16:257–263, 1969.
  25. Induced representations of locally compact groups, volume 197 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2013.
  26. H. Kober. A theorem on Banach spaces. Compos. Math., 7:135–140, 1939.
  27. Gottfried Köthe. Topological vector spaces. I. Die Grundlehren der mathematischen Wissenschaften, Band 159. Springer-Verlag New York, Inc., New York, 1969. Translated from the German by D. J. H. Garling.
  28. Gottfried Köthe. Topological vector spaces. II, volume 237 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York-Berlin, 1979.
  29. Faithful uniformly continuous representations of Lie groups. J. Lond. Math. Soc., II. Ser., 49(1):100–108, 1994.
  30. Saunders Mac Lane. Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1998.
  31. Topological transformation groups. Robert E. Krieger Publishing Co., Huntington, N.Y., 1974. Reprint of the 1955 original.
  32. Shingo Murakami. Remarks on the structure of maximally almost periodic groups. Osaka Math. J., 2:119–129, 1950.
  33. Topological vector spaces, volume 296 of Pure and Applied Mathematics (Boca Raton). CRC Press, Boca Raton, FL, second edition, 2011.
  34. Karl-Hermann Neeb. Infinite-dimensional groups and their representations. In Lie theory, volume 228 of Progr. Math., pages 213–328. Birkhäuser Boston, Boston, MA, 2004.
  35. Karl-Hermann Neeb. Towards a Lie theory of locally convex groups. Jpn. J. Math., 1(2):291–468, 2006.
  36. Miroslav Pavlović. Function classes on the unit disc. An introduction, volume 52 of De Gruyter Stud. Math. Berlin: De Gruyter, 2nd revised and extended edition edition, 2019.
  37. N. Christopher Phillips. Inverse limits of C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras. J. Operator Theory, 19(1):159–195, 1988.
  38. Continuous selections of multivalued mappings. In Recent progress in general topology III. Based on the presentations at the Prague symposium, Prague, Czech Republic, 2001, pages 711–749. Amsterdam: Atlantis Press, 2014.
  39. Alain Robert. Introduction to the representation theory of compact and locally compact groups, volume 80 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge-New York, 1983.
  40. Topological vector spaces, volume 53 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge-New York, second edition, 1980.
  41. Stefan Rolewicz. Metric linear spaces. 2nd ed, volume 20 of Math. Appl., East Eur. Ser. Kluwer Academic Publishers Group, Dordrecht, 1985.
  42. Sheldon Rothman. The von Neumann kernel and minimally almost-periodic groups. Trans. Am. Math. Soc., 259:401–421, 1980.
  43. Topological vector spaces, volume 3 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1999.
  44. A. I. Shtern. Norm continuous representations of locally compact groups. Russ. J. Math. Phys., 15(4):552–553, 2008.
  45. I. M. Singer. Uniformly continuous representations of Lie groups. Ann. Math. (2), 56:242–247, 1952.
  46. François Trèves. Topological vector spaces, distributions and kernels. Dover Publications, Inc., Mineola, NY, 2006. Unabridged republication of the 1967 original.
  47. William C. Waterhouse. An empty inverse limit. Proc. Am. Math. Soc., 36:618, 1973.
  48. André Weil. L’intégration dans les groupes topologiques et ses applications. Actualités scientifiques et industrielles. 869. Paris: Hermann & Cie. 158 p. (1940)., 1940.
  49. T. W. Wilcox. On the structure of maximally almost periodic groups. Bull. Am. Math. Soc., 73:732–734, 1967.
  50. Stephen Willard. General topology. Dover Publications, Inc., Mineola, NY, 2004. Reprint of the 1970 original [Addison-Wesley, Reading, MA; MR0264581].
Citations (1)

Summary

We haven't generated a summary for this paper yet.