Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Effective Causal Discovery under Identifiable Heteroscedastic Noise Model (2312.12844v2)

Published 20 Dec 2023 in cs.LG, cs.AI, and stat.ME

Abstract: Capturing the underlying structural causal relations represented by Directed Acyclic Graphs (DAGs) has been a fundamental task in various AI disciplines. Causal DAG learning via the continuous optimization framework has recently achieved promising performance in terms of both accuracy and efficiency. However, most methods make strong assumptions of homoscedastic noise, i.e., exogenous noises have equal variances across variables, observations, or even both. The noises in real data usually violate both assumptions due to the biases introduced by different data collection processes. To address the issue of heteroscedastic noise, we introduce relaxed and implementable sufficient conditions, proving the identifiability of a general class of SEM subject to these conditions. Based on the identifiable general SEM, we propose a novel formulation for DAG learning that accounts for the variation in noise variance across variables and observations. We then propose an effective two-phase iterative DAG learning algorithm to address the increasing optimization difficulties and to learn a causal DAG from data with heteroscedastic variable noise under varying variance. We show significant empirical gains of the proposed approaches over state-of-the-art methods on both synthetic data and real data.

Citations (1)

Summary

We haven't generated a summary for this paper yet.