Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s
GPT-5 High 27 tok/s Pro
GPT-4o 102 tok/s
GPT OSS 120B 465 tok/s Pro
Kimi K2 205 tok/s Pro
2000 character limit reached

Covariant odd entanglement entropy in AdS$_3$/CFT$_2$ (2312.12829v3)

Published 20 Dec 2023 in hep-th

Abstract: We advance a covariant construction for the holographic odd entanglement entropy (OEE) of time dependent bipartite states in CFT$_2$s dual to bulk AdS$_3$ geometries. In this context we obtain the OEE for bipartite states in zero, finite temperature and finite size CFT$_2$s dual to bulk pure AdS$_3$ and BTZ black hole geometries through appropriate replica techniques. The replica technique results for the time dependent OEE are reproduced modulo constants in the large central charge limit through holographic computations involving the bulk entanglement wedge cross section (EWCS). Subsequently we obtain the time dependent OEE for bipartite states in zero and finite temperature CFT$_2$s with a conserved charge dual to bulk extremal and non-extremal rotating BTZ black holes through both field theory and covariant holographic computations which again match up to constants in the large central charge limit.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. G. Vidal and R. F. Werner, “Computable measure of entanglement,” Phys. Rev. A 65 (2002) 032314, arXiv:quant-ph/0102117.
  2. S. Dutta and T. Faulkner, “A canonical purification for the entanglement wedge cross-section,” JHEP 03 (2021) 178, arXiv:1905.00577 [hep-th].
  3. P. Hayden, O. Parrikar, and J. Sorce, “The Markov gap for geometric reflected entropy,” JHEP 10 (2021) 047, arXiv:2107.00009 [hep-th].
  4. T. Takayanagi and K. Umemoto, “Entanglement of purification through holographic duality,” Nature Phys. 14 no. 6, (2018) 573–577, arXiv:1708.09393 [hep-th].
  5. P. Caputa, M. Miyaji, T. Takayanagi, and K. Umemoto, “Holographic Entanglement of Purification from Conformal Field Theories,” Phys. Rev. Lett. 122 no. 11, (2019) 111601, arXiv:1812.05268 [hep-th].
  6. Q. Wen, “Balanced Partial Entanglement and the Entanglement Wedge Cross Section,” JHEP 04 (2021) 301, arXiv:2103.00415 [hep-th].
  7. H. A. Camargo, P. Nandy, Q. Wen, and H. Zhong, “Balanced Partial Entanglement and Mixed State Correlations,” arXiv:2201.13362 [hep-th].
  8. D. Basu, “Balanced Partial Entanglement in Flat Holography,” arXiv:2203.05491 [hep-th].
  9. Q. Wen and H. Zhong, “Covariant entanglement wedge cross-section, balanced partial entanglement and gravitational anomalies,” SciPost Phys. 13 no. 3, (2022) 056, arXiv:2205.10858 [hep-th].
  10. P. Calabrese and J. L. Cardy, “Entanglement entropy and quantum field theory,” J. Stat. Mech. 0406 (2004) P06002, arXiv:hep-th/0405152.
  11. P. Calabrese, J. Cardy, and E. Tonni, “Entanglement entropy of two disjoint intervals in conformal field theory,” J. Stat. Mech. 0911 (2009) P11001, arXiv:0905.2069 [hep-th].
  12. P. Calabrese and J. Cardy, “Entanglement entropy and conformal field theory,” J. Phys. A 42 (2009) 504005, arXiv:0905.4013 [cond-mat.stat-mech].
  13. S. Ryu and T. Takayanagi, “Holographic derivation of entanglement entropy from AdS/CFT,” Phys. Rev. Lett. 96 (2006) 181602, arXiv:hep-th/0603001.
  14. S. Ryu and T. Takayanagi, “Aspects of Holographic Entanglement Entropy,” JHEP 08 (2006) 045, arXiv:hep-th/0605073.
  15. V. E. Hubeny, M. Rangamani, and T. Takayanagi, “A Covariant holographic entanglement entropy proposal,” JHEP 07 (2007) 062, arXiv:0705.0016 [hep-th].
  16. D. V. Fursaev, “Proof of the holographic formula for entanglement entropy,” JHEP 09 (2006) 018, arXiv:hep-th/0606184.
  17. M. Headrick, “Entanglement Renyi entropies in holographic theories,” Phys. Rev. D 82 (2010) 126010, arXiv:1006.0047 [hep-th].
  18. H. Casini, M. Huerta, and R. C. Myers, “Towards a derivation of holographic entanglement entropy,” JHEP 05 (2011) 036, arXiv:1102.0440 [hep-th].
  19. A. Lewkowycz and J. Maldacena, “Generalized gravitational entropy,” JHEP 08 (2013) 090, arXiv:1304.4926 [hep-th].
  20. X. Dong, A. Lewkowycz, and M. Rangamani, “Deriving covariant holographic entanglement,” JHEP 11 (2016) 028, arXiv:1607.07506 [hep-th].
  21. T. Faulkner, A. Lewkowycz, and J. Maldacena, “Quantum corrections to holographic entanglement entropy,” JHEP 11 (2013) 074, arXiv:1307.2892 [hep-th].
  22. K. Tamaoka, “Entanglement Wedge Cross Section from the Dual Density Matrix,” Phys. Rev. Lett. 122 no. 14, (2019) 141601, arXiv:1809.09109 [hep-th].
  23. Y. Kusuki and K. Tamaoka, “Dynamics of Entanglement Wedge Cross Section from Conformal Field Theories,” Phys. Lett. B 814 (2021) 136105, arXiv:1907.06646 [hep-th].
  24. Y. Kusuki and K. Tamaoka, “Entanglement Wedge Cross Section from CFT: Dynamics of Local Operator Quench,” JHEP 02 (2020) 017, arXiv:1909.06790 [hep-th].
  25. A. Mollabashi and K. Tamaoka, “A Field Theory Study of Entanglement Wedge Cross Section: Odd Entropy,” JHEP 08 (2020) 078, arXiv:2004.04163 [hep-th].
  26. C. Berthiere, H. Chen, Y. Liu, and B. Chen, “Topological reflected entropy in Chern-Simons theories,” Phys. Rev. B 103 no. 3, (2021) 035149, arXiv:2008.07950 [hep-th].
  27. M. Ghasemi, A. Naseh, and R. Pirmoradian, “Odd entanglement entropy and logarithmic negativity for thermofield double states,” JHEP 10 (2021) 128, arXiv:2106.15451 [hep-th].
  28. J. K. Basak, H. Chourasiya, V. Raj, and G. Sengupta, “Odd entanglement entropy in Galilean conformal field theories and flat holography,” Eur. Phys. J. C 82 no. 11, (2022) 1050, arXiv:2203.03902 [hep-th].
  29. D. Basu, S. Biswas, A. Dey, B. Paul, and G. Sengupta, “Odd entanglement entropy in T⁢T¯T¯T\text{T}\bar{\text{T}}T over¯ start_ARG T end_ARG deformed CFT22{}_{2}start_FLOATSUBSCRIPT 2 end_FLOATSUBSCRIPTs and holography,” Phys. Rev. D 108 no. 12, (2023) 126013, arXiv:2307.04832 [hep-th].
  30. P. Calabrese, J. Cardy, and E. Tonni, “Entanglement negativity in extended systems: A field theoretical approach,” J. Stat. Mech. 1302 (2013) P02008, arXiv:1210.5359 [cond-mat.stat-mech].
  31. P. Calabrese, J. Cardy, and E. Tonni, “Entanglement negativity in quantum field theory,” Phys. Rev. Lett. 109 (2012) 130502, arXiv:1206.3092 [cond-mat.stat-mech].
  32. P. Calabrese, J. Cardy, and E. Tonni, “Finite temperature entanglement negativity in conformal field theory,” J. Phys. A 48 no. 1, (2015) 015006, arXiv:1408.3043 [cond-mat.stat-mech].
  33. R. Bousso, “A Covariant entropy conjecture,” JHEP 07 (1999) 004, arXiv:hep-th/9905177.
  34. R. Bousso, “Holography in general space-times,” JHEP 06 (1999) 028, arXiv:hep-th/9906022.
  35. R. Bousso, “The holographic principle,” NATO Sci. Ser. II 104 (2003) 75–166.
  36. A. L. Fitzpatrick, J. Kaplan, and M. T. Walters, “Universality of Long-Distance AdS Physics from the CFT Bootstrap,” JHEP 08 (2014) 145, arXiv:1403.6829 [hep-th].
  37. S. Carlip, “The (2+1)-Dimensional black hole,” Class. Quant. Grav. 12 (1995) 2853–2880, arXiv:gr-qc/9506079.
  38. S. H. Shenker and D. Stanford, “Black holes and the butterfly effect,” JHEP 03 (2014) 067, arXiv:1306.0622 [hep-th].
  39. J. D. Brown and M. Henneaux, “Central Charges in the Canonical Realization of Asymptotic Symmetries: An Example from Three-Dimensional Gravity,” Commun. Math. Phys. 104 (1986) 207–226.
  40. J. Kumar Basak, V. Malvimat, H. Parihar, B. Paul, and G. Sengupta, “On minimal entanglement wedge cross section for holographic entanglement negativity,” arXiv:2002.10272 [hep-th].
  41. D. Basu, A. Chandra, V. Raj, and G. Sengupta, “Entanglement wedge in flat holography and entanglement negativity,” SciPost Phys. Core 5 (2022) 013, arXiv:2106.14896 [hep-th].
  42. D. Basu, H. Parihar, V. Raj, and G. Sengupta, “Entanglement negativity, reflected entropy, and anomalous gravitation,” Phys. Rev. D 105 no. 8, (2022) 086013, arXiv:2202.00683 [hep-th].
  43. P. Caputa, V. Jejjala, and H. Soltanpanahi, “Entanglement entropy of extremal BTZ black holes,” Phys. Rev. D 89 no. 4, (2014) 046006, arXiv:1309.7852 [hep-th].
  44. P. Caputa, G. Mandal, and R. Sinha, “Dynamical entanglement entropy with angular momentum and U(1) charge,” JHEP 11 (2013) 052, arXiv:1306.4974 [hep-th].
  45. M. Banados, C. Teitelboim, and J. Zanelli, “The Black hole in three-dimensional space-time,” Phys. Rev. Lett. 69 (1992) 1849–1851, arXiv:hep-th/9204099.
  46. M. Banados, M. Henneaux, C. Teitelboim, and J. Zanelli, “Geometry of the (2+1) black hole,” Phys. Rev. D 48 (1993) 1506–1525, arXiv:gr-qc/9302012. [Erratum: Phys.Rev.D 88, 069902 (2013)].
  47. V. P. Frolov and K. S. Thorne, “Renormalized Stress - Energy Tensor Near the Horizon of a Slowly Evolving, Rotating Black Hole,” Phys. Rev. D 39 (1989) 2125–2154.
  48. V. Balasubramanian, P. Kraus, and A. E. Lawrence, “Bulk versus boundary dynamics in anti-de Sitter space-time,” Phys. Rev. D 59 (1999) 046003, arXiv:hep-th/9805171.
  49. E. Keski-Vakkuri, “Bulk and boundary dynamics in BTZ black holes,” Phys. Rev. D 59 (1999) 104001, arXiv:hep-th/9808037.
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.