Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Data-driven Design of High Pressure Hydride Superconductors using DFT and Deep Learning (2312.12694v4)

Published 20 Dec 2023 in cond-mat.mtrl-sci and cond-mat.supr-con

Abstract: The observation of superconductivity in hydride-based materials under ultrahigh pressures (for example, H$3$S and LaH${10}$) has fueled the interest in a more data-driven approach to discovering new high-pressure hydride superconductors. In this work, we performed density functional theory (DFT) calculations to predict the critical temperature ($T_c$) of over 900 hydride materials under a pressure range of (0 to 500) GPa, where we found 122 dynamically stable structures with a $T_c$ above MgB$_2$ (39 K). To accelerate screening, we trained a graph neural network (GNN) model to predict $T_c$ and demonstrated that a universal machine learned force-field can be used to relax hydride structures under arbitrary pressures, with significantly reduced cost. By combining DFT and GNNs, we can establish a more complete map of hydrides under pressure.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (5)
  1. Sommer, T.; Willa, R.; Schmalian, J.; Friederich, P. 3DSC - A New Dataset of Superconductors Including Crystal Structures. 2022
  2. Cerqueira, T. F. T.; Sanna, A.; Marques, M. A. L. Sampling the Whole Materials Space for Conventional Superconducting Materials. 2023
  3. Wierzbowska, M.; de Gironcoli, S.; Giannozzi, P. Origins of low-and high-pressure discontinuities of T⁢_𝑇_T\_italic_T _{c𝑐citalic_c} in niobium. arXiv preprint cond-mat/0504077 2005,
  4. Wang, M.; Yu, L.; Zheng, D.; Gan, Q.; Gai, Y.; Ye, Z.; Li, M.; Zhou, J.; Huang, Q.; Ma, C., et al. Deep Graph Library: Towards efficient and scalable deep learning on graphs. arXiv e-prints 2019,
  5. Gasteiger, J.; Shuaibi, M.; Sriram, A.; Günnemann, S.; Ulissi, Z.; Zitnick, C. L.; Das, A. GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets. 2022
Citations (6)

Summary

We haven't generated a summary for this paper yet.