Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Using monodromy to recover symmetries of polynomial systems (2312.12685v1)

Published 20 Dec 2023 in math.AG and cs.MS

Abstract: Galois/monodromy groups attached to parametric systems of polynomial equations provide a method for detecting the existence of symmetries in solution sets. Beyond the question of existence, one would like to compute formulas for these symmetries, towards the eventual goal of solving the systems more efficiently. We describe and implement one possible approach to this task using numerical homotopy continuation and multivariate rational function interpolation. We describe additional methods that detect and exploit a priori unknown quasi-homogeneous structure in symmetries. These methods extend the range of interpolation to larger examples, including applications with nonlinear symmetries drawn from vision and robotics.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. F. Sottile, T. Yahl, Galois groups in enumerative geometry and applications (2021). URL: https://arxiv.org/abs/2108.07905. doi:10.48550/ARXIV.2108.07905.
  2. Numerical computation of Galois groups, Found. Comput. Math. 18 (2018) 867–890. URL: https://doi.org/10.1007/s10208-017-9356-x. doi:10.1007/s10208-017-9356-x.
  3. Solving polynomial systems via homotopy continuation and monodromy, IMA Journal of Numerical Analysis 39 (2019) 1421–1446.
  4. Using monodromy to recover symmetries of polynomial systems, in: ISSAC’23—Proceedings of the 2023 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2023, pp. 251–259.
  5. Julia: A fresh approach to numerical computing, SIAM Review 59 (2017) 65–98. URL: https://epubs.siam.org/doi/10.1137/141000671. doi:10.1137/141000671.
  6. A. Galligo, A. Poteaux, Continuations and monodromy on random riemann surfaces, in: Proceedings of the 2009 Conference on Symbolic Numeric Computation, SNC ’09, Association for Computing Machinery, New York, NY, USA, 2009, p. 115–124. URL: https://doi.org/10.1145/1577190.1577210. doi:10.1145/1577190.1577210.
  7. B. Deconinck, M. van Hoeij, Computing Riemann matrices of algebraic curves, volume 152/153, 2001, pp. 28–46. URL: https://doi.org/10.1016/S0167-2789(01)00156-7. doi:10.1016/S0167-2789(01)00156-7, advances in nonlinear mathematics and science.
  8. Numerical decomposition of the solution sets of polynomial systems into irreducible components, SIAM J. Numer. Anal. 38 (2001) 2022–2046. URL: https://doi.org/10.1137/S0036142900372549. doi:10.1137/S0036142900372549.
  9. A. Martín del Campo, J. I. Rodriguez, Critical points via monodromy and local methods, J. Symbolic Comput. 79 (2017) 559–574. URL: https://doi.org/10.1016/j.jsc.2016.07.019. doi:10.1016/j.jsc.2016.07.019.
  10. Solving decomposable sparse systems, Numer. Algorithms 88 (2021) 453–474. URL: https://doi.org/10.1007/s11075-020-01045-x. doi:10.1007/s11075-020-01045-x.
  11. Galois/monodromy groups for decomposing minimal problems in 3d reconstruction, SIAM Journal on Applied Algebra and Geometry 6 (2022) 740–772. URL: https://doi.org/10.1137/21M1422872. doi:10.1137/21M1422872.
  12. E. Kaltofen, Z. Yang, On exact and approximate interpolation of sparse rational functions, in: D. Wang (Ed.), Symbolic and Algebraic Computation, International Symposium, ISSAC 2007, Waterloo, Ontario, Canada, July 28 - August 1, 2007, Proceedings, ACM, 2007, pp. 203–210. URL: https://doi.org/10.1145/1277548.1277577. doi:10.1145/1277548.1277577.
  13. A. A. M. Cuyt, W. Lee, Sparse interpolation of multivariate rational functions, Theor. Comput. Sci. 412 (2011) 1445–1456. URL: https://doi.org/10.1016/j.tcs.2010.11.050. doi:10.1016/j.tcs.2010.11.050.
  14. J. van der Hoeven, G. Lecerf, On sparse interpolation of rational functions and gcds, ACM Commun. Comput. Algebra 55 (2021) 1–12. URL: https://doi.org/10.1145/3466895.3466896. doi:10.1145/3466895.3466896.
  15. An approach for certifying homotopy continuation paths: univariate case, in: ISSAC’18—Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation, ACM, New York, 2018, pp. 399–406. URL: https://doi.org/10.1145/3208976.3209010. doi:10.1145/3208976.3209010.
  16. C. Beltrán, A. Leykin, Robust certified numerical homotopy tracking, Found. Comput. Math. 13 (2013) 253–295. URL: https://doi.org/10.1007/s10208-013-9143-2. doi:10.1007/s10208-013-9143-2.
  17. An a posteriori certification algorithm for Newton homotopies (2014) 248–255. URL: https://doi.org/10.1145/2608628.2608651. doi:10.1145/2608628.2608651.
  18. Decomposable sparse polynomial systems, Journal of Software for Algebra and Geometry 11 (2021) 53–59.
  19. V. Larsson, K. Åström, Uncovering symmetries in polynomial systems, in: B. Leibe, J. Matas, N. Sebe, M. Welling (Eds.), Computer Vision – ECCV 2016, Springer International Publishing, 2016, pp. 252–267.
  20. Using symmetries in the eigenvalue method for polynomial systems, J. Symbolic Comput. 44 (2009) 1536–1550. URL: https://doi.org/10.1016/j.jsc.2008.11.009. doi:10.1016/j.jsc.2008.11.009.
  21. E. Hubert, G. Labahn, Scaling invariants and symmetry reduction of dynamical systems, Foundations of Computational Mathematics 13 (2013) 479–516.
  22. E. Hubert, G. Labahn, Computation of invariants of finite abelian groups, Math. Comp. 85 (2016) 3029–3050.
  23. J. F. Ritt, Errata: “Prime and composite polynomials” [Trans. Amer. Math. Soc. 23 (1922), no. 1, 51–66; 1501189], Trans. Amer. Math. Soc. 23 (1922) 431. URL: https://doi.org/10.2307/1988887. doi:10.2307/1988887.
  24. Decomposition of generic multivariate polynomials, in: W. Koepf (Ed.), Symbolic and Algebraic Computation, International Symposium, ISSAC 2010, Munich, Germany, July 25-28, 2010, Proceedings, ACM, 2010, pp. 131–137. URL: https://doi.org/10.1145/1837934.1837963. doi:10.1145/1837934.1837963.
  25. On multivariate polynomial decomposition, in: V. G. Ganzha, E. W. Mayr, E. V. Vorozhtsov (Eds.), Proceedings of the Second Workshop on Computer Algebra in Scientific Computing, CASC 1999, Munich, Germany, May 31 - June 4, 1999, Springer, 1999, pp. 463–478. URL: https://doi.org/10.1007/978-3-642-60218-4_35. doi:10.1007/978-3-642-60218-4_35.
  26. T. F. Coleman, A. Pothen, The null space problem. I. Complexity, SIAM J. Algebraic Discrete Methods 7 (1986) 527–537. URL: https://doi.org/10.1137/0607059. doi:10.1137/0607059.
  27. E. B. Vinberg, V. L. Popov, Invariant theory, in: Algebraic geometry, 4 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 137–314, 315.
  28. A. P. Morgan, A. J. Sommese, Coefficient-parameter polynomial continuation, Appl. Math. Comput. 29 (1989) 123–160. URL: https://doi.org/10.1016/0096-3003(89)90099-4. doi:10.1016/0096-3003(89)90099-4.
  29. P. Breiding, S. Timme, HomotopyContinuation.jl: A Package for Homotopy Continuation in Julia, in: Mathematical Software – ICMS 2018, Springer International Publishing, Cham, 2018, pp. 458–465.
  30. Nemo/hecke: computer algebra and number theory packages for the julia programming language, in: Proceedings of the 2017 acm on international symposium on symbolic and algebraic computation, 2017, pp. 157–164.
  31. D. Nistér, An efficient solution to the five-point relative pose problem, IEEE Trans. Pattern Anal. Mach. Intell. 26 (2004) 756–777. URL: https://doi.org/10.1109/TPAMI.2004.17. doi:10.1109/TPAMI.2004.17.
  32. P. Sturm, A historical survey of geometric computer vision, in: International Conference on Computer Analysis of Images and Patterns, Springer, 2011, pp. 1–8.
  33. V. Y. Pan, How bad are vandermonde matrices?, SIAM Journal on Matrix Analysis and Applications 37 (2016) 676–694. doi:10.1137/15M1030170.
  34. N. Higham, Error analysis of the björck-pereyra algorithms for solving vandermonde systems, NUMERISCHE MATHEMATIK 50 (1987) 613–632. doi:10.1007/BF01408579.
  35. Four-view geometry with unknown radial distortion, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2023, pp. 8990–9000.
  36. Complete Solution of the Nine-Point Path Synthesis Problem for Four-Bar Linkages, Journal of Mechanical Design 114 (1992) 153–159. URL: https://doi.org/10.1115/1.2916909. doi:10.1115/1.2916909. arXiv:https://asmedigitalcollection.asme.org/mechanicaldesign/article-pdf/114/1/153/5507001/153_1.pdf.
  37. J. D. Hauenstein, S. N. Sherman, Using monodromy to statistically estimate the number of solutions, in: W. Holderbaum, J. M. Selig (Eds.), 2nd IMA Conference on Mathematics of Robotics, Manchester, UK, 9-11 September 2020, volume 21 of Springer Proceedings in Advanced Robotics, Springer, 2020, pp. 37–46. URL: https://doi.org/10.1007/978-3-030-91352-6_4. doi:10.1007/978-3-030-91352-6_4.
  38. M. M. Plecnik, R. S. Fearing, Finding only finite roots to large kinematic synthesis systems, Journal of Mechanisms and Robotics 9 (2017) 021005.
  39. J. D. Hauenstein, F. Sottile, Algorithm 921: alphaCertified: certifying solutions to polynomial systems, ACM Trans. Math. Software 38 (2012) Art. 28, 20. URL: https://doi.org/10.1145/2331130.2331136. doi:10.1145/2331130.2331136.

Summary

We haven't generated a summary for this paper yet.