Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Calibrating Wireless Ray Tracing for Digital Twinning using Local Phase Error Estimates (2312.12625v2)

Published 19 Dec 2023 in eess.SP and cs.LG

Abstract: Embodying the principle of simulation intelligence, digital twin (DT) systems construct and maintain a high-fidelity virtual model of a physical system. This paper focuses on ray tracing (RT), which is widely seen as an enabling technology for DTs of the radio access network (RAN) segment of next-generation disaggregated wireless systems. RT makes it possible to simulate channel conditions, enabling data augmentation and prediction-based transmission. However, the effectiveness of RT hinges on the adaptation of the electromagnetic properties assumed by the RT to actual channel conditions, a process known as calibration. The main challenge of RT calibration is the fact that small discrepancies in the geometric model fed to the RT software hinder the accuracy of the predicted phases of the simulated propagation paths. Existing solutions to this problem either rely on the channel power profile, hence disregarding phase information, or they operate on the channel responses by assuming the simulated phases to be sufficiently accurate for calibration. This paper proposes a novel channel response-based scheme that, unlike the state of the art, estimates and compensates for the phase errors in the RT-generated channel responses. The proposed approach builds on the variational expectation maximization algorithm with a flexible choice of the prior phase-error distribution that bridges between a deterministic model with no phase errors and a stochastic model with uniform phase errors. The algorithm is computationally efficient, and is demonstrated, by leveraging the open-source differentiable RT software available within the Sionna library, to outperform existing methods in terms of the accuracy of RT predictions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (49)
  1. A. Lavin, D. Krakauer, H. Zenil, J. Gottschlich, T. Mattson, J. Brehmer, A. Anandkumar, S. Choudry, K. Rocki, A. G. Baydin et al., “Simulation intelligence: Towards a new generation of scientific methods,” arXiv preprint arXiv:2112.03235, 2021.
  2. W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn, “Digital twin in manufacturing: A categorical literature review and classification,” IFAC-PapersOnLine, vol. 51, no. 11, pp. 1016–1022, 2018.
  3. I. Errandonea, S. Beltrán, and S. Arrizabalaga, “Digital twin for maintenance: A literature review,” Computers in Industry, vol. 123, p. 103316, 2020.
  4. M. Liu, S. Fang, H. Dong, and C. Xu, “Review of digital twin about concepts, technologies, and industrial applications,” Journal of Manufacturing Systems, vol. 58, pp. 346–361, 2021.
  5. A. Thelen, X. Zhang, O. Fink, Y. Lu, S. Ghosh, B. D. Youn, M. D. Todd, S. Mahadevan, C. Hu, and Z. Hu, “A comprehensive review of digital twin—part 1: modeling and twinning enabling technologies,” Structural and Multidisciplinary Optimization, vol. 65, no. 12, pp. 1–55, 2022.
  6. ——, “A comprehensive review of digital twin—part 2: roles of uncertainty quantification and optimization, a battery digital twin, and perspectives,” Structural and multidisciplinary optimization, vol. 66, no. 1, p. 1, 2023.
  7. M. Polese, L. Bonati, S. D’oro, S. Basagni, and T. Melodia, “Understanding O-RAN: Architecture, interfaces, algorithms, security, and research challenges,” IEEE Communications Surveys & Tutorials, 2023.
  8. L. U. Khan, W. Saad, D. Niyato, Z. Han, and C. S. Hong, “Digital-twin-enabled 6G: Vision, architectural trends, and future directions,” IEEE Communications Magazine, vol. 60, no. 1, pp. 74–80, 2022.
  9. J. Jagannath, K. Ramezanpour, and A. Jagannath, “Digital twin virtualization with machine learning for IoT and beyond 5G networks: Research directions for security and optimal control,” in Proceedings of the 2022 ACM Workshop on Wireless Security and Machine Learning, 2022, pp. 81–86.
  10. L. Hui, M. Wang, L. Zhang, L. Lu, and Y. Cui, “Digital twin for networking: A data-driven performance modeling perspective,” IEEE Network, 2022.
  11. B. Salehi, U. Demir, D. Roy, S. Pradhan, J. Dy, S. Ioannidis, and K. Chowdhury, “Multiverse at the edge: Interacting real world and digital twins for wireless beamforming,” arXiv preprint arXiv:2305.10350, 2023.
  12. D. Villa, M. Tehrani-Moayyed, C. P. Robinson, L. Bonati, P. Johari, M. Polese, S. Basagni, and T. Melodia, “Colosseum as a digital twin: Bridging real-world experimentation and wireless network emulation,” arXiv preprint arXiv:2303.17063, 2023.
  13. J. Hoydis, F. A. Aoudia, S. Cammerer, M. Nimier-David, N. Binder, G. Marcus, and A. Keller, “Sionna RT: Differentiable ray tracing for radio propagation modeling,” arXiv preprint arXiv:2303.11103, 2023.
  14. M. Pengnoo, M. T. Barros, L. Wuttisittikulkij, B. Butler, A. Davy, and S. Balasubramaniam, “Digital twin for metasurface reflector management in 6g terahertz communications,” IEEE access, vol. 8, pp. 114 580–114 596, 2020.
  15. N. Zeulin, A. Ponomarenko-Timofeev, O. Galinina, and S. Andreev, “ML-assisted beam selection via digital twins for time-sensitive industrial IoT,” IEEE Internet of Things Magazine, vol. 5, no. 1, pp. 36–40, 2022.
  16. S. Jiang and A. Alkhateeb, “Digital twin based beam prediction: Can we train in the digital world and deploy in reality?” arXiv preprint arXiv:2301.07682, 2023.
  17. A. Alkhateeb, S. Jiang, and G. Charan, “Real-time digital twins: Vision and research directions for 6G and beyond,” IEEE Communications Magazine, 2023.
  18. V.-H. Nguyen, V. Corlay, N. Gresset, and C. Ciochina, “Probabilistic ray-tracing aided positioning at mmwave frequencies,” arXiv preprint arXiv:2308.08441, 2023.
  19. ITU, “Recommendation ITU-R P. 526-9: Propagation by diffraction,” 2019.
  20. V. Degli-Esposti, F. Fuschini, E. M. Vitucci, and G. Falciasecca, “Measurement and modelling of scattering from buildings,” IEEE Transactions on Antennas and Propagation, vol. 55, no. 1, pp. 143–153, 2007.
  21. V. Degli-Esposti, V.-M. Kolmonen, E. M. Vitucci, and P. Vainikainen, “Analysis and modeling on co-and cross-polarized urban radio propagation for dual-polarized MIMO wireless systems,” IEEE transactions on antennas and propagation, vol. 59, no. 11, pp. 4247–4256, 2011.
  22. K. Vuckovic, M. B. Mashhadi, F. Hejazi, N. Rahnavard, and A. Alkhateeb, “PARAMOUNT: Towards generalizable deep learning for mmwave beam selection using sub-6GHz channel measurements,” IEEE Transactions on Wireless Communications, 2023.
  23. H. Viswanathan and P. E. Mogensen, “Communications in the 6G era,” IEEE Access, vol. 8, pp. 57 063–57 074, 2020.
  24. P. Ferrand, M. Guillaud, C. Studer, and O. Tirkkonen, “Wireless channel charting: Theory, practice, and applications,” IEEE Communications Magazine, vol. 61, no. 6, pp. 124–130, 2023.
  25. C. Ruah, O. Simeone, and B. Al-Hashimi, “A bayesian framework for digital twin-based control, monitoring, and data collection in wireless systems,” IEEE Journal on Selected Areas in Communications, 2023.
  26. OpenStreetMap contributors, “Planet dump retrieved from https://planet.osm.org ,” https://www.openstreetmap.org, 2022.
  27. ITU, “Recommendation ITU-R P.2040-2: Effects of building materials and structures on radiowave propagation above about 100 MHz,” 2021.
  28. J. Jemai, P. C. Eggers, G. F. Pedersen, and T. Kurner, “Calibration of a UWB sub-band channel model using simulated annealing,” IEEE Transactions on Antennas and Propagation, vol. 57, no. 10, pp. 3439–3443, 2009.
  29. S. Priebe, M. Jacob, and T. Kürner, “Calibrated broadband ray tracing for the simulation of wave propagation in mm and sub-mm wave indoor communication channels,” in European Wireless 2012; 18th European Wireless Conference 2012.   VDE, 2012, pp. 1–10.
  30. D. He, B. Ai, K. Guan, L. Wang, Z. Zhong, and T. Kürner, “The design and applications of high-performance ray-tracing simulation platform for 5G and beyond wireless communications: A tutorial,” IEEE communications surveys & tutorials, vol. 21, no. 1, pp. 10–27, 2018.
  31. R. Charbonnier, C. Lai, T. Tenoux, D. Caudill, G. Gougeon, J. Senic, C. Gentile, Y. Corre, J. Chuang, and N. Golmie, “Calibration of ray-tracing with diffuse scattering against 28-GHz directional urban channel measurements,” IEEE Transactions on Vehicular Technology, vol. 69, no. 12, pp. 14 264–14 276, 2020.
  32. O. Kanhere and T. S. Rappaport, “Calibration of NYURay, a 3D mmwave and sub-THz ray tracer using indoor, outdoor, and factory channel measurements,” arXiv preprint arXiv:2302.12380, 2023.
  33. G. S. Bhatia, Y. Corre, and M. Di Renzo, “Tuning of ray-based channel model for 5G indoor industrial scenarios,” in 2023 IEEE International Mediterranean Conference on Communications and Networking (MeditCom).   IEEE, 2023, pp. 311–316.
  34. F. Xue, W. Lu, Z. Chen, and C. J. Webster, “From LiDAR point cloud towards digital twin city: Clustering city objects based on Gestalt principles,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 167, pp. 418–431, 2020.
  35. X. Lin, L. Kundu, C. Dick, E. Obiodu, T. Mostak, and M. Flaxman, “6G digital twin networks: From theory to practice,” IEEE Communications Magazine, 2023.
  36. Z. Li, T. Müller, A. Evans, R. H. Taylor, M. Unberath, M.-Y. Liu, and C.-H. Lin, “Neuralangelo: High-fidelity neural surface reconstruction,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023, pp. 8456–8465.
  37. J. Hoydis, S. Cammerer, F. A. Aoudia, A. Vem, N. Binder, G. Marcus, and A. Keller, “Sionna: An open-source library for next-generation physical layer research,” arXiv preprint arXiv:2203.11854, 2022.
  38. H. Do, N. Lee, and A. Lozano, “Parabolic wavefront model for line-of-sight MIMO channels,” IEEE Transactions on Wireless Communications, 2023.
  39. C. F. Van Loan, “The ubiquitous Kronecker product,” Journal of computational and applied mathematics, vol. 123, no. 1-2, pp. 85–100, 2000.
  40. M.-A. Badiu and J. P. Coon, “Communication through a large reflecting surface with phase errors,” IEEE Wireless Communications Letters, vol. 9, no. 2, pp. 184–188, 2019.
  41. T. Wang, M.-A. Badiu, G. Chen, and J. P. Coon, “Outage probability analysis of RIS-assisted wireless networks with Von Mises phase errors,” IEEE Wireless Communications Letters, vol. 10, no. 12, pp. 2737–2741, 2021.
  42. S. Royo and M. Ballesta-Garcia, “An overview of LiDAR imaging systems for autonomous vehicles,” Applied sciences, vol. 9, no. 19, p. 4093, 2019.
  43. M. D. Bedford, A. Hrovat, G. Kennedy, T. Javornik, and P. Foster, “Modeling microwave propagation in natural caves using LiDAR and ray tracing,” IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3878–3888, 2019.
  44. B. Keinert, M. Innmann, M. Sänger, and M. Stamminger, “Spherical Fibonacci mapping,” ACM Transactions on Graphics (TOG), vol. 34, no. 6, pp. 1–7, 2015.
  45. D. Ruiz-Antolín and J. Segura, “A new type of sharp bounds for ratios of modified Bessel functions,” Journal of Mathematical Analysis and Applications, vol. 443, no. 2, pp. 1232–1246, 2016.
  46. G. W. Hill, “Evaluation and inversion of the ratios of modified bessel functions, I1⁢(x)/I0⁢(x)subscript𝐼1𝑥subscript𝐼0𝑥I_{1}(x)/I_{0}(x)italic_I start_POSTSUBSCRIPT 1 end_POSTSUBSCRIPT ( italic_x ) / italic_I start_POSTSUBSCRIPT 0 end_POSTSUBSCRIPT ( italic_x ) and I1.5⁢(x)/I0.5⁢(x)subscript𝐼1.5𝑥subscript𝐼0.5𝑥I_{1.5}(x)/I_{0.5}(x)italic_I start_POSTSUBSCRIPT 1.5 end_POSTSUBSCRIPT ( italic_x ) / italic_I start_POSTSUBSCRIPT 0.5 end_POSTSUBSCRIPT ( italic_x ),” ACM Transactions on Mathematical Software (TOMS), vol. 7, no. 2, pp. 199–208, 1981.
  47. C. Ruah, “Code Repository for Ray Tracer Calibration using Local Phase Error Estimates,” 2023. [Online]. Available: https://github.com/kclip/phase-aware-rt-calibration
  48. J. Hoydis, F. A. Aoudia, S. Cammerer, F. Euchner, M. Nimier-David, S. ten Brink, and A. Keller, “Learning radio environments by differentiable ray tracing,” arXiv preprint arXiv:2311.18558, 2023.
  49. U. Lund and S. Rao Jammalamadaka, “An entropy-based test for goodness of fit of the von Mises distribution,” Journal of statistical computation and simulation, vol. 67, no. 4, pp. 319–332, 2000.
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com