Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Behind the Intent of Extract Method Refactoring: A Systematic Literature Review (2312.12600v1)

Published 19 Dec 2023 in cs.SE

Abstract: Code refactoring is widely recognized as an essential software engineering practice to improve the understandability and maintainability of the source code. The Extract Method refactoring is considered as "Swiss army knife" of refactorings, as developers often apply it to improve their code quality. In recent years, several studies attempted to recommend Extract Method refactorings allowing the collection, analysis, and revelation of actionable data-driven insights about refactoring practices within software projects. In this paper, we aim at reviewing the current body of knowledge on existing Extract Method refactoring research and explore their limitations and potential improvement opportunities for future research efforts. Hence, researchers and practitioners begin to be aware of the state-of-the-art and identify new research opportunities in this context. We review the body of knowledge related to Extract Method refactoring in the form of a systematic literature review (SLR). After compiling an initial pool of 1,367 papers, we conducted a systematic selection and our final pool included 83 primary studies. We define three sets of research questions and systematically develop and refine a classification schema based on several criteria including their methodology, applicability, and degree of automation. The results construct a catalog of 83 Extract Method approaches indicating that several techniques have been proposed in the literature. Our results show that: (i) 38.6% of Extract Method refactoring studies primarily focus on addressing code clones; (ii) Several of the Extract Method tools incorporate the developer's involvement in the decision-making process when applying the method extraction, and (iii) the existing benchmarks are heterogeneous and do not contain the same type of information, making standardizing them for the purpose of benchmarking difficult.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com