Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A New Probe of Gravitational Parity Violation Through (Non-)Observation of the Stochastic Gravitational-Wave Background (2312.12532v1)

Published 19 Dec 2023 in gr-qc, astro-ph.HE, and hep-th

Abstract: Parity violation in the gravitational sector is a prediction of many theories beyond general relativity. In the propagation of gravitational waves, parity violation manifests by inducing amplitude and/or velocity birefringence between right- and left-circularly polarized modes. We study how the stochastic gravitational wave background can be used to place constraints on these birefringent effects. We consider two model scenarios, one in which we allow birefringent corrections to become arbitrarily large, and a second in which we impose stringent theory priors. In the former, we place constraints on a generic birefringent gravitational-wave signal due to the current non-detection of a stochastic background from compact binary events. We find a joint constraint on birefringent parameters, $\kappa_D$ and $\kappa_z$, of $\mathcal{O}(10{-1})$. In the latter scenario, we forecast constraints on parity violating theories resulting from observations of the future upgraded LIGO-Virgo-KAGRA network as well as proposed third-generation detectors. We find that third-generation detectors will be able to improve the constraints by at least two orders of magnitude, yielding new stringent bounds on parity violating theories. This work introduces a novel and powerful probe of gravitational parity violation with gravitational-wave data.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (73)
  1. J. Aasi et al. (LIGO Scientific), Advanced LIGO, Class. Quant. Grav. 32, 074001 (2015), arXiv:1411.4547 [gr-qc] .
  2. F. Acernese et al. (VIRGO), Advanced Virgo: a second-generation interferometric gravitational wave detector, Class.Quant.Grav. 32, 024001 (2015), arXiv:1408.3978 [gr-qc] .
  3. T. Akutsu et al. (KAGRA), Overview of KAGRA: Detector design and construction history, PTEP 2021, 05A101 (2021), arXiv:2005.05574 [physics.ins-det] .
  4. G. Agazie et al. (NANOGrav), The NANOGrav 15 yr Data Set: Evidence for a Gravitational-wave Background, Astrophys. J. Lett. 951, L8 (2023), arXiv:2306.16213 [astro-ph.HE] .
  5. A. Afzal et al. (NANOGrav), The NANOGrav 15 yr Data Set: Search for Signals from New Physics, Astrophys. J. Lett. 951, L11 (2023), arXiv:2306.16219 [astro-ph.HE] .
  6. J. Antoniadis et al. (EPTA), The second data release from the European Pulsar Timing Array III. Search for gravitational wave signals,  (2023), arXiv:2306.16214 [astro-ph.HE] .
  7. H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23, 075024 (2023), arXiv:2306.16216 [astro-ph.HE] .
  8. D. J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes Pulsar Timing Array, Astrophys. J. Lett. 951, L6 (2023), arXiv:2306.16215 [astro-ph.HE] .
  9. R. Abbott et al. (LIGO Scientific, Virgo), Tests of general relativity with binary black holes from the second LIGO-Virgo gravitational-wave transient catalog, Phys. Rev. D 103, 122002 (2021d), arXiv:2010.14529 [gr-qc] .
  10. T. D. Lee and C.-N. Yang, Question of Parity Conservation in Weak Interactions, Phys. Rev. 104, 254 (1956).
  11. J. Hou, Z. Slepian, and R. N. Cahn, Measurement of parity-odd modes in the large-scale 4-point correlation function of Sloan Digital Sky Survey Baryon Oscillation Spectroscopic Survey twelfth data release CMASS and LOWZ galaxies, Mon. Not. Roy. Astron. Soc. 522, 5701 (2023), arXiv:2206.03625 [astro-ph.CO] .
  12. O. H. E. Philcox, Probing parity violation with the four-point correlation function of BOSS galaxies, Phys. Rev. D 106, 063501 (2022), arXiv:2206.04227 [astro-ph.CO] .
  13. R. Jackiw and S. Y. Pi, Chern-Simons modification of general relativity, Phys. Rev. D68, 104012 (2003), arXiv:gr-qc/03x1 .
  14. S. Alexander and N. Yunes, Chern-Simons modified general relativity, Phys. Rep. 480, 1 (2009), arXiv:0907.2562 [hep-th] .
  15. F. Sulantay, M. Lagos, and M. Bañados, Chiral Gravitational Waves in Palatini Chern-Simons,   (2022), arXiv:2211.08925 [gr-qc] .
  16. A. Conroy and T. Koivisto, Parity-Violating Gravity and GW170817 in Non-Riemannian Cosmology, JCAP 12, 016, arXiv:1908.04313 [gr-qc] .
  17. P. Horava, Quantum Gravity at a Lifshitz Point, Phys. Rev. D 79, 084008 (2009), arXiv:0901.3775 [hep-th] .
  18. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Monographs on Mathematical Physics (Cambridge University Press, 2007).
  19. L. Alvarez-Gaume and E. Witten, Gravitational anomalies, Nuclear Physics B 234, 269 (1984).
  20. S. H. S. Alexander, M. E. Peskin, and M. M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett. 96, 081301 (2006).
  21. S. H. S. Alexander and J. Gates, S. James, Can the string scale be related to the cosmic baryon asymmetry?, JCAP 0606, 018, hep-th/0409014 .
  22. S. Alexander and C. Creque-Sarbinowski, Chern-Simons Gravity and Neutrino Self-Interactions,   (2022), arXiv:2207.05094 [hep-ph] .
  23. S. Alexander, L. S. Finn, and N. Yunes, A Gravitational-wave probe of effective quantum gravity, Phys. Rev. D 78, 066005 (2008), arXiv:0712.2542 [gr-qc] .
  24. A. Lue, L.-M. Wang, and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett. 83, 1506 (1999), astro-ph/9812088 .
  25. S. Alexander and J. Martin, Birefringent gravitational waves and the consistency check of inflation, Phys. Rev. D71, 063526 (2005), hep-th/0410230 .
  26. S. H. Alexander and N. Yunes, Gravitational wave probes of parity violation in compact binary coalescences, Phys. Rev. D 97, 064033 (2018), arXiv:1712.01853 [gr-qc] .
  27. Z.-C. Zhao, Z. Cao, and S. Wang, Search for the Birefringence of Gravitational Waves with the Third Observing Run of Advanced LIGO-Virgo, Astrophys. J. 930, 139 (2022), arXiv:2201.02813 [gr-qc] .
  28. N. Seto and A. Taruya, Measuring a Parity Violation Signature in the Early Universe via Ground-based Laser Interferometers, Phys. Rev. Lett. 99, 121101 (2007), arXiv:0707.0535 [astro-ph] .
  29. N. Seto and A. Taruya, Polarization analysis of gravitational-wave backgrounds from the correlation signals of ground-based interferometers: Measuring a circular-polarization mode, Phys. Rev. D 77, 103001 (2008), arXiv:0801.4185 [astro-ph] .
  30. R.-G. Cai, C. Fu, and W.-W. Yu, Parity violation in stochastic gravitational wave background from inflation in Nieh-Yan modified teleparallel gravity, Phys. Rev. D 105, 103520 (2022), arXiv:2112.04794 [astro-ph.CO] .
  31. G. Orlando, M. Pieroni, and A. Ricciardone, Measuring Parity Violation in the Stochastic Gravitational Wave Background with the LISA-Taiji network, JCAP 03, 069, arXiv:2011.07059 [astro-ph.CO] .
  32. Y. Jiang and Q.-G. Huang, Upper limits on the polarized isotropic stochastic gravitational-wave background from advanced LIGO-Virgo’s first three observing runs, JCAP 02, 026, arXiv:2210.09952 [astro-ph.CO] .
  33. K. Yagi and H. Yang, Probing Gravitational Parity Violation with Gravitational Waves from Stellar-mass Black Hole Binaries, Phys. Rev. D 97, 104018 (2018), arXiv:1712.00682 [gr-qc] .
  34. K. Yagi, N. Yunes, and T. Tanaka, Gravitational Waves from Quasi-Circular Black Hole Binaries in Dynamical Chern-Simons Gravity, Phys. Rev. Lett. 109, 251105 (2012), [Erratum: Phys. Rev. Lett.116,no.16,169902(2016)], arXiv:1208.5102 [gr-qc] .
  35. S. Tahura, K. Yagi, and Z. Carson, Testing Gravity with Gravitational Waves from Binary Black Hole Mergers: Contributions from Amplitude Corrections, Phys. Rev. D 100, 104001 (2019), arXiv:1907.10059 [gr-qc] .
  36. N. Yunes and F. Pretorius, Dynamical Chern-Simons Modified Gravity. I. Spinning Black Holes in the Slow-Rotation Approximation, Phys. Rev. D 79, 084043 (2009a), arXiv:0902.4669 [gr-qc] .
  37. N. Yunes and F. Pretorius, Fundamental Theoretical Bias in Gravitational Wave Astrophysics and the Parameterized Post-Einsteinian Framework, Phys.Rev. D80, 122003 (2009b), arXiv:0909.3328 [gr-qc] .
  38. C. M. Will, Bounding the mass of the graviton using gravitational-wave observations of inspiralling compact binaries, Phys. Rev. D 57, 2061 (1998).
  39. S. Mirshekari, N. Yunes, and C. M. Will, Constraining Generic Lorentz Violation and the Speed of the Graviton with Gravitational Waves, Phys. Rev. D 85, 024041 (2012), arXiv:1110.2720 [gr-qc] .
  40. L. Sampson, N. Yunes, and N. Cornish, A Rosetta Stone for Parameterized Tests of Gravity,   (2013), arXiv:1307.8144 [gr-qc] .
  41. T. Regimbau, The astrophysical gravitational wave stochastic background, Res. Astron. Astrophys. 11, 369 (2011), arXiv:1101.2762 [astro-ph.CO] .
  42. N. Christensen, Stochastic Gravitational Wave Backgrounds, Rept. Prog. Phys. 82, 016903 (2019), arXiv:1811.08797 [gr-qc] .
  43. B. Allen and J. D. Romano, Detecting a stochastic background of gravitational radiation: Signal processing strategies and sensitivities, Phys. Rev. D 59, 102001 (1999), arXiv:gr-qc/9710117 .
  44. E. S. Phinney, A Practical theorem on gravitational wave backgrounds,   (2001), arXiv:astro-ph/0108028 .
  45. N. Aghanim et al. (Planck), Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641, A6 (2020), [Erratum: Astron.Astrophys. 652, C4 (2021)], arXiv:1807.06209 [astro-ph.CO] .
  46. M. Isi and L. C. Stein, Measuring stochastic gravitational-wave energy beyond general relativity, Phys. Rev. D 98, 104025 (2018), arXiv:1807.02123 [gr-qc] .
  47. N. Langer and C. A. Norman, On the collapsar model of long gamma-ray bursts: constraints from cosmic metallicity evolution, Astrophys. J. Lett. 638, L63 (2006), arXiv:astro-ph/0512271 .
  48. P. Madau and M. Dickinson, Cosmic Star Formation History, Ann. Rev. Astron. Astrophys. 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
  49. E. Thrane and J. D. Romano, Sensitivity curves for searches for gravitational-wave backgrounds, Phys. Rev. D 88, 124032 (2013), arXiv:1310.5300 [astro-ph.IM] .
  50. J. D. Romano and N. J. Cornish, Detection methods for stochastic gravitational-wave backgrounds: a unified treatment, Living Rev. Rel. 20, 2 (2017), arXiv:1608.06889 [gr-qc] .
  51. B. F. Schutz and M. Tinto, Antenna patterns of interferometric detectors of gravitational waves - I. Linearly polarized waves., Mon. Not. Roy. Astron. Soc. 224, 131 (1987).
  52. E. E. Flanagan, The Sensitivity of the laser interferometer gravitational wave observatory (LIGO) to a stochastic background, and its dependence on the detector orientations, Phys. Rev. D 48, 2389 (1993), arXiv:astro-ph/9305029 .
  53. T. A. Callister and W. M. Farr, A Parameter-Free Tour of the Binary Black Hole Population,   (2023), arXiv:2302.07289 [astro-ph.HE] .
  54. B. P. Abbott et al. (LIGO Scientific, Virgo), GW150914: Implications for the stochastic gravitational wave background from binary black holes, Phys. Rev. Lett. 116, 131102 (2016), arXiv:1602.03847 [gr-qc] .
  55. P. Ajith et al., Inspiral-merger-ringdown waveforms for black-hole binaries with non-precessing spins, Phys. Rev. Lett. 106, 241101 (2011), arXiv:0909.2867 [gr-qc] .
  56. M. Fishbach, D. E. Holz, and W. M. Farr, Does the Black Hole Merger Rate Evolve with Redshift?, Astrophys. J. Lett. 863, L41 (2018), arXiv:1805.10270 [astro-ph.HE] .
  57. M. Chruślińska, Chemical evolution of the Universe and its consequences for gravitational-wave astrophysics,   (2022), arXiv:2206.10622 [astro-ph.GA] .
  58. B. Edelman, B. Farr, and Z. Doctor, Cover Your Basis: Comprehensive Data-driven Characterization of the Binary Black Hole Population, Astrophys. J. 946, 16 (2023), arXiv:2210.12834 [astro-ph.HE] .
  59. M. Fishbach and L. van Son, LIGO–Virgo–KAGRA’s Oldest Black Holes: Probing Star Formation at Cosmic Noon With GWTC-3, Astrophys. J. Lett. 957, L31 (2023), arXiv:2307.15824 [astro-ph.GA] .
  60. M. Chruslinska, G. Nelemans, and K. Belczynski, The influence of the distribution of cosmic star formation at different metallicities on the properties of merging double compact objects, Mon. Not. Roy. Astron. Soc. 482, 5012 (2019), arXiv:1811.03565 [astro-ph.HE] .
  61. N. Giacobbo and M. Mapelli, The progenitors of compact-object binaries: impact of metallicity, common envelope and natal kicks, Mon. Not. Roy. Astron. Soc. 480, 2011 (2018), arXiv:1806.00001 [astro-ph.HE] .
  62. J. Yousuf, S. Kandhasamy, and M. A. Malik, Effects of calibration uncertainties on the detection and parameter estimation of isotropic gravitational-wave backgrounds, Phys. Rev. D 107, 102002 (2023), arXiv:2301.13531 [gr-qc] .
  63. A. I. Renzini et al., pygwb: A Python-based Library for Gravitational-wave Background Searches, Astrophys. J. 952, 25 (2023), arXiv:2303.15696 [gr-qc] .
  64. M. D. Hoffman and A. Gelman, The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo, Journal of Machine Learning Research 15, 1593 (2014).
  65. D. Phan, N. Pradhan, and M. Jankowiak, Composable effects for flexible and accelerated probabilistic programming in numpyro, arXiv:1912.11554  (2019).
  66. Y. Ali-Haimoud, Revisiting the double-binary-pulsar probe of non-dynamical Chern-Simons gravity, Phys. Rev. D83, 124050 (2011), arXiv:1105.0009 [astro-ph.HE] .
  67. R. Kato and J. Soda, Probing circular polarization in stochastic gravitational wave background with pulsar timing arrays, Phys. Rev. D 93, 062003 (2016), arXiv:1512.09139 [gr-qc] .
  68. E. Belgacem and M. Kamionkowski, Chirality of the gravitational-wave background and pulsar-timing arrays, Phys. Rev. D 102, 023004 (2020), arXiv:2004.05480 [astro-ph.CO] .
  69. G. Sato-Polito and M. Kamionkowski, Pulsar-timing measurement of the circular polarization of the stochastic gravitational-wave background, Phys. Rev. D 106, 023004 (2022), arXiv:2111.05867 [astro-ph.CO] .
  70. Astropy Collaboration, Astropy: A community Python package for astronomy, Astronomy & Astrophysics 558, A33 (2013).
  71. Astropy Collaboration, The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package, Astronomical J. 156, 123 (2018).
  72. J. D. Hunter, Matplotlib: A 2d graphics environment, Computing In Science & Engineering 9, 90 (2007).
  73. P. B. Covas et al. (LSC), Identification and mitigation of narrow spectral artifacts that degrade searches for persistent gravitational waves in the first two observing runs of Advanced LIGO, Phys. Rev. D 97, 082002 (2018), arXiv:1801.07204 [astro-ph.IM] .
Citations (11)

Summary

We haven't generated a summary for this paper yet.

Github Logo Streamline Icon: https://streamlinehq.com