Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing Graviton Parity and Gaussianity with Planck T-, E- and B-mode Bispectra (2312.12498v2)

Published 19 Dec 2023 in astro-ph.CO, gr-qc, hep-ex, hep-ph, and hep-th

Abstract: Many inflationary theories predict a non-Gaussian spectrum of primordial tensor perturbations, sourced from non-standard vacuum fluctuations, modified general relativity or new particles such as gauge fields. Several such models also predict a chiral spectrum in which one polarization state dominates. In this work, we place constraints on the non-Gaussianity and parity properties of primordial gravitational waves utilizing the Planck PR4 temperature and polarization dataset. Using recently developed quasi-optimal bispectrum estimators, we compute binned parity-even and parity-odd bispectra for all combinations of CMB T-, E- and B-modes with $2\leq \ell<500$, and perform both blind tests, sensitive to arbitrary three-point functions, and targeted analyses of a well-motivated equilateral gravitational wave template (sourced by gauge fields), with amplitude $f_{\rm NL}{ttt}$. This is the first time B-modes have been included in primordial non-Gaussianity analyses; they are found to strengthen constraints on the parity-even sector by $\simeq 30\%$ and dominate the parity-odd bounds, without inducing bias. We report no detection of non-Gaussianity (of either parity), with the template amplitude constrained to $f_{\rm NL}{ttt}=900\pm 700$ (stable with respect to a number of analysis variations), compared to $1300\pm1200$ in Planck 2018. The methods applied herein can be reapplied to upcoming CMB datasets such as LiteBIRD, with the inclusion of B-modes poised to dramatically improve future bounds on tensor non-Gaussianity.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (39)
  1. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A10 (2020a), arXiv:1807.06211 [astro-ph.CO] .
  2. M. Kamionkowski and E. D. Kovetz, Ann. Rev. Astron. Astrophys. 54, 227 (2016), arXiv:1510.06042 [astro-ph.CO] .
  3. L. Sorbo, JCAP 06, 003 (2011), arXiv:1101.1525 [astro-ph.CO] .
  4. J. L. Cook and L. Sorbo, JCAP 11, 047 (2013), arXiv:1307.7077 [astro-ph.CO] .
  5. E. Komatsu, Nature Rev. Phys. 4, 452 (2022), arXiv:2202.13919 [astro-ph.CO] .
  6. S. Kanno and M. Sasaki, JHEP 08, 210 (2022), arXiv:2206.03667 [hep-th] .
  7. J. M. Maldacena and G. L. Pimentel, JHEP 09, 045 (2011), arXiv:1104.2846 [hep-th] .
  8. S. Alexander and J. Martin, Phys. Rev. D 71, 063526 (2005), arXiv:hep-th/0410230 .
  9. N. Bartolo and G. Orlando, JCAP 07, 034 (2017), arXiv:1706.04627 [astro-ph.CO] .
  10. L. Bordin and G. Cabass, JCAP 07, 014 (2020), arXiv:2004.00619 [astro-ph.CO] .
  11. G. Cabass, JCAP 12, 001 (2021), arXiv:2103.09816 [hep-th] .
  12. E. Pajer, JCAP 01, 023 (2021), arXiv:2010.12818 [hep-th] .
  13. J. M. Maldacena, JHEP 05, 013 (2003), arXiv:astro-ph/0210603 .
  14. M. Mylova,   (2019), arXiv:1912.00800 [gr-qc] .
  15. M. Shiraishi, JCAP 06, 015 (2012), arXiv:1202.2847 [astro-ph.CO] .
  16. P. A. R. Ade et al. (Planck), Astron. Astrophys. 594, A17 (2016), arXiv:1502.01592 [astro-ph.CO] .
  17. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A9 (2020b), arXiv:1905.05697 [astro-ph.CO] .
  18. M. Shiraishi, Front. Astron. Space Sci. 6, 49 (2019), arXiv:1905.12485 [astro-ph.CO] .
  19. M. Shiraishi, Phys. Rev. D 94, 083503 (2016a), arXiv:1608.00368 [astro-ph.CO] .
  20. O. H. E. Philcox, Phys. Rev. D 106, 063501 (2022), arXiv:2206.04227 [astro-ph.CO] .
  21. O. H. E. Philcox,   (2023a), arXiv:2303.12106 [astro-ph.CO] .
  22. O. H. E. Philcox and M. Shiraishi,   (2023), arXiv:2308.03831 [astro-ph.CO] .
  23. W. R. Coulton and D. N. Spergel, JCAP 10, 056 (2019), arXiv:1901.04515 [astro-ph.CO] .
  24. O. H. E. Philcox, Phys. Rev. D 107, 123516 (2023b), arXiv:2303.08828 [astro-ph.CO] .
  25. O. H. E. Philcox,   (2023c), arXiv:2306.03915 [astro-ph.CO] .
  26. O. H. E. Philcox, “PolyBin: Binned polyspectrum estimation on the full sky,” Astrophysics Source Code Library, record ascl:2307.020 (2023), ascl:2307.020 .
  27. M. Kamionkowski and T. Souradeep, Phys. Rev. D 83, 027301 (2011), arXiv:1010.4304 [astro-ph.CO] .
  28. K. M. Smith and M. Zaldarriaga, MNRAS 417, 2 (2011), arXiv:astro-ph/0612571 [astro-ph] .
  29. M. Shiraishi, Mod. Phys. Lett. A 31, 1640003 (2016b).
  30. Y. Watanabe and E. Komatsu,   (2020), arXiv:2004.04350 [hep-th] .
  31. Y. Akrami et al. (Planck), Astron. Astrophys. 643, A42 (2020c), arXiv:2007.04997 [astro-ph.CO] .
  32. M. Tristram et al., Astron. Astrophys. 647, A128 (2021), arXiv:2010.01139 [astro-ph.CO] .
  33. Y. Akrami et al. (Planck), Astron. Astrophys. 641, A4 (2020d), arXiv:1807.06208 [astro-ph.CO] .
  34. O. H. E. Philcox, Phys. Rev. D 103, 103504 (2021), arXiv:2012.09389 [astro-ph.CO] .
  35. O. H. E. Philcox, Phys. Rev. D 104, 123529 (2021), arXiv:2107.06287 [astro-ph.CO] .
  36. A. J. S. Hamilton and M. Tegmark, Mon. Not. Roy. Astron. Soc. 312, 285 (2000), arXiv:astro-ph/9905192 .
  37. M. Reinecke and D. S. Seljebotn, A&A 554, A112 (2013), arXiv:1303.4945 [physics.comp-ph] .
  38. M. Shiraishi, JCAP 11, 006 (2013), arXiv:1308.2531 [astro-ph.CO] .
  39. W. Hu, Phys. Rev. D 62, 043007 (2000), arXiv:astro-ph/0001303 .
Citations (2)

Summary

We haven't generated a summary for this paper yet.