Celestial Gluon Amplitudes from the Outside In (2312.12394v2)
Abstract: We show that, given a two-dimensional realization of the celestial OPE in self-dual Yang-Mills, we can find a scalar source around which scattering amplitudes replicate correlation functions computed from the 2D `gluon' operators in a limit where a dynamic massless scalar decouples. We derive conditions on the two-dimensional three-point correlation function so that such a source exists and give two particular examples of this construction, one in which gluons are constructed from vertex operators in the semiclassical limit of Liouville theory and another in which the soft gluons arise from generalized free fields. Finally, we identify a bulk dual to the level of the boundary Kac-Moody algebra and discuss moving beyond the decoupling limit.
- S. Pasterski, S.-H. Shao, and A. Strominger, “Flat Space Amplitudes and Conformal Symmetry of the Celestial Sphere,” Phys. Rev. D96 no. 6, (2017) 065026, arXiv:1701.00049 [hep-th].
- S. Pasterski and S.-H. Shao, “Conformal basis for flat space amplitudes,” Phys. Rev. D96 no. 6, (2017) 065022, arXiv:1705.01027 [hep-th].
- A. Guevara, E. Himwich, M. Pate, and A. Strominger, “Holographic symmetry algebras for gauge theory and gravity,” JHEP 11 (2021) 152, arXiv:2103.03961 [hep-th].
- M. Pate, A.-M. Raclariu, A. Strominger, and E. Y. Yuan, “Celestial operator products of gluons and gravitons,” Rev. Math. Phys. 33 no. 09, (2021) 2140003, arXiv:1910.07424 [hep-th].
- A. Puhm, “Conformally Soft Theorem in Gravity,” JHEP 09 (2020) 130, arXiv:1905.09799 [hep-th].
- E. Himwich, M. Pate, and K. Singh, “Celestial operator product expansions and w(1+infinity) symmetry for all spins,” JHEP 01 (2022) 080, arXiv:2108.07763 [hep-th].
- A. Strominger, “w1+∞subscript𝑤1w_{1+\infty}italic_w start_POSTSUBSCRIPT 1 + ∞ end_POSTSUBSCRIPT Algebra and the Celestial Sphere: Infinite Towers of Soft Graviton, Photon, and Gluon Symmetries,” Phys. Rev. Lett. 127 no. 22, (2021) 221601.
- Y. A. Law and M. Zlotnikov, “Poincaré constraints on celestial amplitudes,” JHEP 03 (2020) 085, arXiv:1910.04356 [hep-th]. [Erratum: JHEP 04, 202 (2020)].
- S. Pasterski, S.-H. Shao, and A. Strominger, “Gluon Amplitudes as 2d Conformal Correlators,” Phys. Rev. D96 no. 8, (2017) 085006, arXiv:1706.03917 [hep-th].
- W. Melton, A. Sharma, and A. Strominger, “Celestial Leaf Amplitudes,” arXiv:2312.07820 [hep-th].
- E. Casali, W. Melton, and A. Strominger, “Celestial amplitudes as AdS-Witten diagrams,” JHEP 11 (2022) 140, arXiv:2204.10249 [hep-th].
- W. Melton, S. A. Narayanan, and A. Strominger, “Deforming soft algebras for gauge theory,” Journal of High Energy Physics 2023 no. 3, (2023) 233. https://doi.org/10.1007/JHEP03(2023)233.
- W. Fan, A. Fotopoulos, S. Stieberger, T. R. Taylor, and B. Zhu, “Elements of celestial conformal field theory,” Journal of High Energy Physics 2022 no. 8, (2022) 213. https://doi.org/10.1007/JHEP08(2022)213.
- K. Costello, N. M. Paquette, and A. Sharma, “Top-Down Holography in an Asymptotically Flat Spacetime,” Phys. Rev. Lett. 130 no. 6, (2023) 061602, arXiv:2208.14233 [hep-th].
- K. Costello, N. M. Paquette, and A. Sharma, “Burns space and holography,” JHEP 10 (2023) 174, arXiv:2306.00940 [hep-th].
- S. Stieberger, T. R. Taylor, and B. Zhu, “Celestial Liouville theory for Yang-Mills amplitudes,” Phys. Lett. B 836 (2023) 137588, arXiv:2209.02724 [hep-th].
- S. Stieberger, T. R. Taylor, and B. Zhu, “Yang-Mills as a Liouville theory,” Phys. Lett. B 846 (2023) 138229, arXiv:2308.09741 [hep-th].
- A. Ball, Y. Hu, and S. Pasterski, “Multicollinear Singularities in Celestial CFT,” arXiv:2309.16602 [hep-th].
- K. Costello and N. M. Paquette, “Celestial holography meets twisted holography: 4d amplitudes from chiral correlators,” JHEP 10 (2022) 193, arXiv:2201.02595 [hep-th].
- G. Chalmers and W. Siegel, “The Selfdual sector of QCD amplitudes,” Phys. Rev. D 54 (1996) 7628–7633, arXiv:hep-th/9606061.
- L. J. Dixon, E. W. N. Glover, and V. V. Khoze, “MHV rules for Higgs plus multi-gluon amplitudes,” JHEP 12 (2004) 015, arXiv:hep-th/0411092.
- T. Adamo, L. Mason, and A. Sharma, “Celestial amplitudes and conformal soft theorems,” Class. Quant. Grav. 36 no. 20, (2019) 205018, arXiv:1905.09224 [hep-th].
- Graduate texts in contemporary physics. Springer, New York, NY, 1997. https://cds.cern.ch/record/639405.
- V. Balasubramanian, A. Bernamonti, B. Craps, T. De Jonckheere, and F. Galli, “Heavy-heavy-light-light correlators in liouville theory,” Journal of High Energy Physics 2017 no. 8, (2017) 45. https://doi.org/10.1007/JHEP08(2017)045.
- L. Donnay, S. Pasterski, and A. Puhm, “Asymptotic Symmetries and Celestial CFT,” JHEP 09 (2020) 176, arXiv:2005.08990 [hep-th].
- L. Ren, M. Spradlin, A. Yelleshpur Srikant, and A. Volovich, “On effective field theories with celestial duals,” JHEP 08 (2022) 251, arXiv:2206.08322 [hep-th].