Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A String Theory for Two Dimensional Yang-Mills Theory I (2312.12266v3)

Published 19 Dec 2023 in hep-th

Abstract: Two dimensional gauge theories with charged matter fields are useful toy models for studying gauge theory dynamics, and in particular for studying the duality of large $N$ gauge theories to perturbative string theories. A useful starting point for such studies is the pure Yang-Mills theory, which is exactly solvable. Its $1/N$ expansion was interpreted as a string theory by Gross and Taylor 30 years ago, but they did not provide a worldsheet action for this string theory, and such an action is useful for coupling it to matter fields. The chiral sector of the Yang-Mills theory can be written as a sum over holomorphic maps and has useful worldsheet descriptions, but the full theory includes more general extremal-area maps; a formal worldsheet action including all these maps in a "topological rigid string theory" was written by Ho\v{r}ava many years ago, but various subtleties arise when trying to use it for computations. In this paper we suggest a Polyakov-like generalization of Ho\v{r}ava's worldsheet action which is well-defined, and we show how it reproduces the free limit of the Yang-Mills theory, both by formal arguments and by explicitly computing its partition function in several cases. In the future we plan to generalize this string theory to the finite-coupling gauge theory, and to analyze it with boundaries, corresponding either to Wilson loops or to dynamical matter fields in the fundamental representation.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (42)
  1. Gerard ’t Hooft “A Planar Diagram Theory for Strong Interactions” In Nucl. Phys. B 72, 1974, pp. 461 DOI: 10.1016/0550-3213(74)90154-0
  2. Juan Martin Maldacena “The Large N limit of superconformal field theories and supergravity” In Adv. Theor. Math. Phys. 2, 1998, pp. 231–252 DOI: 10.4310/ATMP.1998.v2.n2.a1
  3. “On the gauge theory / geometry correspondence” In Adv. Theor. Math. Phys. 3, 1999, pp. 1415–1443 DOI: 10.4310/ATMP.1999.v3.n5.a5
  4. “World sheet derivation of a large N duality” In Nucl. Phys. B 641, 2002, pp. 3–34 DOI: 10.1016/S0550-3213(02)00620-X
  5. David J. Gross and Washington Taylor “Two-dimensional QCD and strings” In International Conference on Strings 93, 1993 arXiv:hep-th/9311072
  6. David J. Gross and Washington Taylor “Two-dimensional QCD is a string theory” In Nucl. Phys. B 400, 1993, pp. 181–208 DOI: 10.1016/0550-3213(93)90403-C
  7. David J. Gross and Washington Taylor “Twists and Wilson loops in the string theory of two-dimensional QCD” In Nucl. Phys. B 403, 1993, pp. 395–452 DOI: 10.1016/0550-3213(93)90042-N
  8. Gerard ’t Hooft “A Two-Dimensional Model for Mesons” In Nucl. Phys. B 75, 1974, pp. 461–470 DOI: 10.1016/0550-3213(74)90088-1
  9. Andrew Strominger “Loop Space Solution of Two-dimensional QCD” In Phys. Lett. B 101, 1981, pp. 271–276 DOI: 10.1016/0370-2693(81)90311-7
  10. Matthew J. Strassler “Field theory without Feynman diagrams: One loop effective actions” In Nucl. Phys. B 385, 1992, pp. 145–184 DOI: 10.1016/0550-3213(92)90098-V
  11. O. Ganor, J. Sonnenschein and S. Yankielowicz “Folds in 2-D string theories” In Nucl. Phys. B 427, 1994, pp. 203–244 DOI: 10.1016/0550-3213(94)90275-5
  12. Stefan Cordes, Gregory W. Moore and Sanjaye Ramgoolam “Large N 2-D Yang-Mills theory and topological string theory” In Commun. Math. Phys. 185, 1997, pp. 543–619 DOI: 10.1007/s002200050102
  13. Stefan Cordes, Gregory W. Moore and Sanjaye Ramgoolam “Lectures on 2-d Yang-Mills theory, equivariant cohomology and topological field theories” In Nucl. Phys. B Proc. Suppl. 41, 1995, pp. 184–244 DOI: 10.1016/0920-5632(95)00434-B
  14. Cumrun Vafa “Two dimensional Yang-Mills, black holes and topological strings”, 2004 arXiv:hep-th/0406058
  15. “String Dual of Two-Dimensional Yang-Mills and Symmetric Product Orbifiolds” To appear., 2024 URL: https://online.kitp.ucsb.edu/online/bootstrap-c23/
  16. Robert E. Rudd “The String partition function for QCD on the torus”, 1994 arXiv:hep-th/9407176
  17. Petr Horava “Topological strings and QCD in two-dimensions” In NATO Advanced Research Workshop on New Developments in String Theory, Conformal Models and Topological Field Theory, 1993 arXiv:hep-th/9311156
  18. Petr Horava “Topological rigid string theory and two-dimensional QCD” In Nucl. Phys. B 463, 1996, pp. 238–286 DOI: 10.1016/0550-3213(96)00036-3
  19. Alexander A. Migdal “Recursion Equations in Gauge Theories” In Sov. Phys. JETP 42, 1975, pp. 413
  20. B.E. Rusakov “Loop averages and partition functions in U(N) gauge theory on two-dimensional manifolds” In Mod. Phys. Lett. A 5, 1990, pp. 693–703 DOI: 10.1142/S0217732390000780
  21. D.S. Fine “Quantum Yang-Mills on the two-sphere” In Commun. Math. Phys. 134, 1990, pp. 273–292 DOI: 10.1007/BF02097703
  22. Edward Witten “Two-dimensional gauge theories revisited” In J. Geom. Phys. 9, 1992, pp. 303–368 DOI: 10.1016/0393-0440(92)90034-X
  23. “Quantum Yang-Mills theory on arbitrary surfaces” In Int. J. Mod. Phys. A 7, 1992, pp. 3781–3806 DOI: 10.1142/S0217751X9200168X
  24. O. Ganor, J. Sonnenschein and S. Yankielowicz “The String theory approach to generalized 2-D Yang-Mills theory” In Nucl. Phys. B 434, 1995, pp. 139–178 DOI: 10.1016/0550-3213(94)00397-W
  25. Michael R. Douglas and Vladimir A. Kazakov “Large N phase transition in continuum QCD in two-dimensions” In Phys. Lett. B 319, 1993, pp. 219–230 DOI: 10.1016/0370-2693(93)90806-S
  26. Joseph A. Minahan and Alexios P. Polychronakos “Classical solutions for two-dimensional QCD on the sphere” In Nucl. Phys. B 422, 1994, pp. 172–194 DOI: 10.1016/0550-3213(94)00153-7
  27. David J. Gross and Andrei Matytsin “Instanton induced large N phase transitions in two-dimensional and four-dimensional QCD” In Nucl. Phys. B 429, 1994, pp. 50–74 DOI: 10.1016/S0550-3213(94)80041-3
  28. Washington Taylor “Counting strings and phase transitions in 2-D QCD”, 1994 arXiv:hep-th/9404175
  29. Alexander M. Polyakov “Fine Structure of Strings” In Nucl. Phys. B 268, 1986, pp. 406–412 DOI: 10.1016/0550-3213(86)90162-8
  30. H. Kleinert “The Membrane Properties of Condensing Strings” In Phys. Lett. B 174, 1986, pp. 335–338 DOI: 10.1016/0370-2693(86)91111-1
  31. Matthias Blau “The Mathai-Quillen formalism and topological field theory” In J. Geom. Phys. 11, 1993, pp. 95–127 DOI: 10.1016/0393-0440(93)90049-K
  32. “BRST Quantization of the String Model With Extrinsic Curvature” In Phys. Lett. B 202, 1988, pp. 381–384 DOI: 10.1016/0370-2693(88)90489-3
  33. “Gauge Invariance Based on the Extrinsic Geometry in the Rigid String” In Z. Phys. C 44, 1989, pp. 337 DOI: 10.1007/BF01557339
  34. Petr Horava “On QCD string theory and AdS dynamics” In JHEP 01, 1999, pp. 016 DOI: 10.1088/1126-6708/1999/01/016
  35. Alexander M. Polyakov “Quantum Geometry of Bosonic Strings” In Phys. Lett. B 103, 1981, pp. 207–210 DOI: 10.1016/0370-2693(81)90743-7
  36. J. Polchinski “String theory. Vol. 1: An introduction to the bosonic string”, Cambridge Monographs on Mathematical Physics Cambridge University Press, 2007 DOI: 10.1017/CBO9780511816079
  37. “The disk partition function in string theory” In JHEP 08, 2021, pp. 026 DOI: 10.1007/JHEP08(2021)026
  38. K. Pohlmeyer “Integrable Hamiltonian systems and interactions through quadratic constraints” In Communications in Mathematical Physics 46.3, 1976, pp. 207–221 DOI: 10.1007/BF01609119
  39. Shiing-shen Chern “On the Curvatura Integra in a Riemannian Manifold” In Annals of Mathematics 46.4 Annals of Mathematics, 1945, pp. 674–684 URL: http://www.jstor.org/stable/1969203
  40. Ian Affleck “On constrained instantons” In Nuclear Physics B 191.2, 1981, pp. 429–444 DOI: https://doi.org/10.1016/0550-3213(81)90307-2
  41. Peter B Gilkey “The boundary integrand in the formula for the signature and Euler characteristic of a Riemannian manifold with boundary” In Advances in Mathematics 15.3, 1975, pp. 334–360 DOI: https://doi.org/10.1016/0001-8708(75)90141-3
  42. Varghese Mathai and Daniel G. Quillen “Superconnections, Thom classes and equivariant differential forms” In Topology 25, 1986, pp. 85–110 DOI: 10.1016/0040-9383(86)90007-8
Citations (2)

Summary

We haven't generated a summary for this paper yet.