Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Curated LLM: Synergy of LLMs and Data Curation for tabular augmentation in low-data regimes (2312.12112v3)

Published 19 Dec 2023 in cs.LG and cs.AI

Abstract: Machine Learning (ML) in low-data settings remains an underappreciated yet crucial problem. Hence, data augmentation methods to increase the sample size of datasets needed for ML are key to unlocking the transformative potential of ML in data-deprived regions and domains. Unfortunately, the limited training set constrains traditional tabular synthetic data generators in their ability to generate a large and diverse augmented dataset needed for ML tasks. To address this challenge, we introduce CLLM, which leverages the prior knowledge of LLMs for data augmentation in the low-data regime. However, not all the data generated by LLMs will improve downstream utility, as for any generative model. Consequently, we introduce a principled curation mechanism, leveraging learning dynamics, coupled with confidence and uncertainty metrics, to obtain a high-quality dataset. Empirically, on multiple real-world datasets, we demonstrate the superior performance of CLLM in the low-data regime compared to conventional generators. Additionally, we provide insights into the LLM generation and curation mechanism, shedding light on the features that enable them to output high-quality augmented datasets.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Nabeel Seedat (28 papers)
  2. Nicolas Huynh (6 papers)
  3. Boris van Breugel (18 papers)
  4. Mihaela van der Schaar (321 papers)
Citations (17)