Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic bony structure segmentation and curvature estimation on ultrasound cervical spine images -- a feasibility study (2312.12066v1)

Published 19 Dec 2023 in eess.IV

Abstract: The loss of cervical lordosis is a common degenerative disorder known to be associated with abnormal spinal alignment. In recent years, ultrasound (US) imaging has been widely applied in the assessment of spine deformity and has shown promising results. The objectives of this study are to automatically segment bony structures from the 3D US cervical spine image volume and to assess the cervical lordosis on the key sagittal frames. In this study, a portable ultrasound imaging system was applied to acquire cervical spine image volume. The nnU-Net was trained on to segment bony structures on the transverse images and validated by 5-fold-cross-validation. The volume data were reconstructed from the segmented image series. An energy function indicating intensity levels and integrity of bony structures was designed to extract the proxy key sagittal frames on both left and right sides for the cervical curve measurement. The mean absolute difference (MAD), standard deviation (SD) and correlation between the spine curvatures of the left and right sides were calculated for quantitative evaluation of the proposed method. The DSC value of the nnU-Net model in segmenting ROI was 0.973. For the measurement of 22 lamina curve angles, the MAD, SD and correlation between the left and right sides of the cervical spine were 3.591, 3.432 degrees and 0.926, respectively. The results indicate that our method has a high accuracy and reliability in the automatic segmentation of the cervical spine and shows the potential of diagnosing the loss of cervical lordosis using the 3D ultrasound imaging technique.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (22)
  1. J. T. Kaiser, V. Reddy, M. V. Launico, and J. G. Lugo-Pico, “Anatomy, head and neck: Cervical vertebrae,” in StatPearls [Internet], StatPearls Publishing, Oct. 2023.
  2. G. Gm, L. J, D. Qx, Z. Th, S. Zx, G. Yy, and G. Yz, “Cervical lordosis in asymptomatic individuals: A meta-analysis,” Journal of orthopaedic surgery and research, vol. 13, June 2018.
  3. S. Nori, “Chapter 1 - neck pain,” in Clinical Diagnosis in Physical Medicine & Rehabilitation (S. Nori, M. Stern, and S. W. Lee, eds.), pp. 1–10, St. Louis (MO): Elsevier, Jan. 2022.
  4. V. Delen and S. İlter, “Headache characteristics in chronic neck pain patients with loss of cervical lordosis: A cross-sectional study considering cervicogenic headache,” Medical Science Monitor: International Medical Journal of Experimental and Clinical Research, vol. 29, p. e939427, Mar. 2023.
  5. D. R. Gore, S. B. Sepic, and G. M. Gardner, “Roentgenographic findings of the cervical spine in asymptomatic people,” Spine, vol. 11, no. 6, pp. 521–524, 1986.
  6. R. P. Jackson and A. C. McManus, “Radiographic analysis of sagittal plane alignment and balance in standing volunteers and patients with low back pain matched for age, sex, and size. a prospective controlled clinical study,” Spine, vol. 19, pp. 1611–1618, July 1994.
  7. R. Jackson, “The classic: The cervical syndrome,” Clinical Orthopaedics and Related Research, vol. 468, pp. 1739–1745, July 2010.
  8. K.-S. Suk, K.-T. Kim, S.-H. Lee, and J.-M. Kim, “Significance of chin-brow vertical angle in correction of kyphotic deformity of ankylosing spondylitis patients,” Spine, vol. 28, pp. 2001–2005, Sept. 2003.
  9. D. E. Harrison, D. D. Harrison, R. Cailliet, S. J. Troyanovich, T. J. Janik, and B. Holland, “Cobb method or harrison posterior tangent method: Which to choose for lateral cervical radiographic analysis,” Spine, vol. 25, pp. 2072–2078, Aug. 2000.
  10. Y.-P. Zheng, T. T.-Y. Lee, K. K.-L. Lai, B. H.-K. Yip, G.-Q. Zhou, W.-W. Jiang, J. C.-W. Cheung, M.-S. Wong, B. K.-W. Ng, J. C.-Y. Cheng, and T.-P. Lam, “A reliability and validity study for scolioscan: A radiation-free scoliosis assessment system using 3d ultrasound imaging,” Scoliosis and Spinal Disorders, vol. 11, p. 13, May 2016.
  11. P. Lv, J. Chen, L. Dong, L. Wang, Y. Deng, K. Li, X. Huang, and C. Zhang, “Evaluation of scoliosis with a commercially available ultrasound system,” Journal of Ultrasound in Medicine: Official Journal of the American Institute of Ultrasound in Medicine, vol. 39, pp. 29–36, Jan. 2020.
  12. W. Chen, L. H. Le, and E. H. M. Lou, “Reliability of the axial vertebral rotation measurements of adolescent idiopathic scoliosis using the center of lamina method on ultrasound images: In vitro and in vivo study,” European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, vol. 25, pp. 3265–3273, Oct. 2016.
  13. S. Ge, H. Zeng, and R. Zheng, “Automatic measurement of spinous process angles on ultrasound spine images,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2101–2104, July 2020.
  14. H.-Y. Zeng, E. Lou, S.-H. Ge, Z.-C. Liu, and R. Zheng, “Automatic detection and measurement of spinous process curve on clinical ultrasound spine images,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, pp. 1696–1706, May 2021.
  15. W. Jiang, F. Mei, and Q. Xie, “Novel automated spinal ultrasound segmentation approach for scoliosis visualization,” Frontiers in Physiology, vol. 13, p. 1051808, 2022.
  16. Maarten van Eerd, J. Patijn, J. M. Sieben, M. Sommer, J. Van Zundert, M. van Kleef, and A. Lataster, “Ultrasonography of the cervical spinean in vitro anatomical validation model,” Anesthesiology, vol. 120, pp. 86–96, Jan. 2014.
  17. H. Chen, R. Zheng, E. Lou, and L. H. Le, “Compact and wireless freehand 3d ultrasound real-time spine imaging system: A pilot study,” in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), pp. 2105–2108, July 2020.
  18. F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. H. Maier-Hein, “nnu-net: A self-configuring method for deep learning-based biomedical image segmentation,” Nature Methods, vol. 18, pp. 203–211, Feb. 2021.
  19. H.-B. Chen, R. Zheng, L.-Y. Qian, F.-Y. Liu, S. Song, and H.-Y. Zeng, “Improvement of 3-d ultrasound spine imaging technique using fast reconstruction algorithm,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 68, pp. 3104–3113, Oct. 2021.
  20. J. E. Pruijs, M. A. Hageman, W. Keessen, R. van der Meer, and J. C. van Wieringen, “Variation in cobb angle measurements in scoliosis,” Skeletal Radiology, vol. 23, pp. 517–520, Oct. 1994.
  21. Y. Tang, H. Chen, L. Qian, S. Ge, M. Zhang, and R. Zheng, “Detection of spine curve and vertebral level on ultrasound images using detr,” in 2022 IEEE International Ultrasonics Symposium (IUS), pp. 1–4, Oct. 2022.
  22. A. G. Patwardhan, S. Khayatzadeh, R. M. Havey, L. I. Voronov, Z. A. Smith, O. Kalmanson, A. J. Ghanayem, and W. Sears, “Cervical sagittal balance: A biomechanical perspective can help clinical practice,” European Spine Journal: Official Publication of the European Spine Society, the European Spinal Deformity Society, and the European Section of the Cervical Spine Research Society, vol. 27, pp. 25–38, Feb. 2018.
Citations (1)

Summary

We haven't generated a summary for this paper yet.