Asynchronous multiplicative coarse-space correction (2312.12053v1)
Abstract: This paper introduces the multiplicative variant of the recently proposed asynchronous additive coarse-space correction method. Definition of an asynchronous extension of multiplicative correction is not straightforward, however, our analysis allows for usual asynchronous programming approaches. General asynchronous iterative models are explicitly devised both for shared or replicated coarse problems and for centralized or distributed ones. Convergence conditions are derived and shown to be satisfied for M-matrices, as also done for the additive case. Implementation aspects are discussed, which reveal the need for non-blocking synchronization for building the successive right-hand-side vectors of the coarse problem. Optionally, a parameter allows for applying each coarse solution a maximum number of times, which has an impact on the algorithm efficiency. Numerical results on a high-speed homogeneous cluster confirm the practical efficiency of the asynchronous two-level method over its synchronous counterpart, even when it is not the case for the underlying one-level methods.
- O. Axelsson and L. Kolotilina. Diagonally compensated reduction and related preconditioning methods. Numer. Linear Algebra Appl., 1(2):155–177, 1994.
- Parallel Iterative Algorithms: From Sequential to Grid Computing. Numer. Anal. Sci. Comput. Chapman & Hall/CRC, Boca Raton, FL, 2007.
- G. M. Baudet. Asynchronous iterative methods for multiprocessors. J. ACM, 25(2):226–244, 1978.
- Algebraic theory of multiplicative Schwarz methods. Numer Math (Heidelb), 89(4):605 – 639, 2001.
- D. P. Bertsekas. Distributed asynchronous computation of fixed points. Math Program, 27(1):107–120, 1983.
- Parallel and Distributed Computation: Numerical Methods. Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1989.
- X.-C. Cai and M. Sarkis. A restricted additive Schwarz preconditioner for general sparse linear systems. SIAM J Sci Comput, 21(2):792–797, 1999.
- K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, 1985.
- D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra Appl, 2(2):199–222, 1969.
- A. Frommer and H. Schwandt. A unified representation and theory of algebraic additive Schwarz and multisplitting methods. SIAM J. Matrix Anal. Appl., 18(4):893–912, 1997.
- A. Frommer and D. B. Szyld. Asynchronous two-stage iterative methods. Numer Math (Heidelb), 69(2):141–153, 1994.
- A. Frommer and D. B. Szyld. An algebraic convergence theory for restricted additive Schwarz methods using weighted max norms. SIAM J Numer Anal, 39(2):463–479, 2001.
- M. J. Gander. Schwarz methods over the course of time. Electron. Trans. Numer. Anal., 31:228–255, 2008.
- G. Gbikpi-Benissan and F. Magoulès. Protocol-free asynchronous iterations termination. Adv. Eng. Softw., 146:102827, 2020.
- Scalable asynchronous domain decomposition solvers. SIAM J Sci Comput, 42(6):C384–C409, 2020.
- W. Hackbusch. Multi-Grid Methods and Applications, volume 4 of Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 1985.
- L. Hart and S. McCormick. Asynchronous multilevel adaptive methods for solving partial differential equations on multiprocessors: Basic ideas. Parallel Comput, 12(2):131 – 144, 1989.
- Chaotic multigrid methods for the solution of elliptic equations. Comput Phys Commun, 237:26–36, 2019.
- F. Magoulès and G. Gbikpi-Benissan. Asynchronous Parareal time discretization for partial differential equations. SIAM J Sci Comput, 40(6):C704–C725, 2018.
- F. Magoulès and G. Gbikpi-Benissan. Distributed convergence detection based on global residual error under asynchronous iterations. IEEE Trans. Parallel Distrib. Syst., 29(4):819–829, 2018.
- F. Magoulès and G. Gbikpi-Benissan. JACK2: An MPI-based communication library with non-blocking synchronization for asynchronous iterations. Adv. Eng. Softw., 119:116–133, 2018.
- J. L. Rosenfeld. A case study in programming for parallel-processors. Commun. ACM, 12(12):645–655, 1969.
- Finite termination of asynchronous iterative algorithms. Parallel Comput, 22(1):39 – 56, 1996.
- S. Schechter. Relaxation methods for linear equations. Comm. Pure Appl. Math., 12(2):313–335, 1959.
- A. Toselli and O. Widlund. Domain Decomposition Methods – Algorithms and Theory, volume 34 of Springer Series in Computational Mathematics. Springer-Verlag Berlin Heidelberg, 2005.
- J. Wolfson-Pou and E. Chow. Asynchronous multigrid methods. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, pages 101–110, May 2019.