Transitive Nonlocal Games (2312.12040v1)
Abstract: We study a class of nonlocal games, called transitive games, for which the set of perfect strategies forms a semigroup. We establish several interesting correspondences of bisynchronous transitive games with the theory of compact quantum groups. In particular, we associate a quantum permutation group with each bisynchronous transitive game and vice versa. We prove that the existence of a C*-strategy, the existence of a quantum commuting strategy, and the existence of a classical strategy are all equivalent for bisynchronous transitive games. We then use some of these correspondences to establish necessary and sufficient conditions for some classes of correlations, that arise as perfect strategies of transitive games, to be nonlocal.
- Quantum and non-signalling graph isomorphisms. J. Combin. Theory Ser. B, 136:289–328, 2019. ISSN 0095-8956. doi: 10.1016/j.jctb.2018.11.002.
- D. Avitzour. Free products of C*-algebras. Transactions of the American Mathematical Society, 271(2):423–435, 1982.
- T. Banica. Symmetries of a generic coaction. Mathematische Annalen, 314(4):763–780, Aug. 1999. ISSN 1432-1807. doi: 10.1007/s002080050315.
- T. Banica. Quantum automorphism groups of homogeneous graphs. J. Funct. Anal., 224(2):243–280, 2005. ISSN 0022-1236. doi: 10.1016/j.jfa.2004.11.002. URL https://doi.org/10.1016/j.jfa.2004.11.002.
- T. Banica and J. McCarthy. The frucht property in the quantum group setting. Glasgow Mathematical Journal, 64(3):603–633, 2022. doi: 10.1017/S0017089521000380.
- Co-amenability of compact quantum groups. J. Geom. Phys., 40(2):130–153, 2001. ISSN 0393-0440. doi: 10.1016/S0393-0440(01)00024-9.
- B. Blackadar. Operator algebras, volume 122 of Encyclopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2006. ISBN 978-3-540-28486-4; 3-540-28486-9. doi: 10.1007/3-540-28517-2. Theory of C*superscript𝐶C^{*}italic_C start_POSTSUPERSCRIPT * end_POSTSUPERSCRIPT-algebras and von Neumann algebras, Operator Algebras and Non-commutative Geometry, III.
- K. De Commer. Actions of compact quantum groups. In Topological quantum groups, volume 111 of Banach Center Publ., pages 33–100. Polish Acad. Sci. Inst. Math., Warsaw, 2017.
- Non-closure of the set of quantum correlations via graphs. Comm. Math. Phys., 365(3):1125–1142, 2019. ISSN 0010-3616. doi: 10.1007/s00220-019-03301-1.
- Algebras, synchronous games, and chromatic numbers of graphs. New York J. Math., 25:328–361, 2019.
- MIP*=RE. arXiv e-prints, art. arXiv:2001.04383, Jan. 2020.
- Perfect strategies for non-local games. Math. Phys. Anal. Geom., 23(1):Paper No. 7, 31, 2020a. ISSN 1385-0172. doi: 10.1007/s11040-020-9331-7.
- Nonlocal games and quantum permutation groups. J. Funct. Anal., 279(5):108592, 44, 2020b. ISSN 0022-1236. doi: 10.1016/j.jfa.2020.108592.
- A compositional approach to quantum functions. J. Math. Phys., 59(8):081706, 42, 2018. ISSN 0022-2488. doi: 10.1063/1.5020566. URL https://doi.org/10.1063/1.5020566.
- S. Neshveyev and L. Tuset. Compact quantum groups and their representation categories, volume 20 of Cours Spécialisés [Specialized Courses]. Société Mathématique de France, Paris, 2013. ISBN 978-2-85629-777-3.
- Quantum graph homomorphisms via operator systems. Linear Algebra Appl., 497:23–43, 2016. ISSN 0024-3795. doi: 10.1016/j.laa.2016.02.019.
- V. I. Paulsen and M. Rahaman. Bisynchronous games and factorizable maps. Ann. Henri Poincaré, 22(2):593–614, 2021. ISSN 1424-0637. doi: 10.1007/s00023-020-01003-2.
- Estimating quantum chromatic numbers. J. Funct. Anal., 270(6):2188–2222, 2016. ISSN 0022-1236. doi: 10.1016/j.jfa.2016.01.010.
- D. E. Roberson and S. Schmidt. Quantum symmetry vs nonlocal symmetry. arXiv e-prints, art. arXiv:2012.13328, Dec. 2020.
- W. Slofstra. The set of quantum correlations is not closed. Forum Math. Pi, 7:e1, 41, 2019. doi: 10.1017/fmp.2018.3.
- W. Slofstra. Tsirelson’s problem and an embedding theorem for groups arising from non-local games. J. Amer. Math. Soc., 33(1):1–56, 2020. ISSN 0894-0347. doi: 10.1090/jams/929.
- P. M. Sołtan. Quantum semigroups from synchronous games. Journal of Mathematical Physics, 60(4):042203, Apr. 2019. doi: 10.1063/1.5085118.
- P. M. Sołtan. Quantum families of maps and quantum semigroups on finite quantum spaces. Journal of Geometry and Physics, 59(3):354–368, Mar. 2009. ISSN 0393-0440. doi: 10.1016/j.geomphys.2008.11.007. URL https://www.sciencedirect.com/science/article/pii/S0393044008001885.
- S. Wang. Quantum symmetry groups of finite spaces. Comm. Math. Phys., 195(1):195–211, 1998. ISSN 0010-3616. doi: 10.1007/s002200050385.
- S. L. Woronowicz. Compact quantum groups. In Symétries quantiques (Les Houches, 1995), pages 845–884. North-Holland, Amsterdam, 1998.