Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
157 tokens/sec
GPT-4o
43 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bilinear Expectation Propagation for Distributed Semi-Blind Joint Channel Estimation and Data Detection in Cell-Free Massive MIMO (2312.11688v1)

Published 18 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: We consider a cell-free massive multiple-input multiple-output (CF-MaMIMO) communication system in the uplink transmission and propose a novel algorithm for blind or semi-blind joint channel estimation and data detection (JCD). We formulate the problem in the framework of bilinear inference and develop a solution based on the expectation propagation (EP) method for both channel estimation and data detection. We propose a new approximation of the joint a posteriori distribution of the channel and data whose representation as a factor graph enables the application of the EP approach using the message-passing technique, local low-complexity computations at the nodes, and an effective modeling of channel-data interplay. The derived algorithm, called bilinear-EP JCD, allows for a distributed implementation among access points (APs) and the central processing unit (CPU) and has polynomial complexity. Our simulation results show that it outperforms other EP-based state-of-the-art polynomial time algorithms.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (34)
  1. H. Q. Ngo, A. Ashikhmin, H. Yang, E. G. Larsson, and T. L. Marzetta, “Cell-free massive MIMO versus small cells,” IEEE Transactions on Wireless Communications, vol. 16, no. 3, pp. 1834–1850, 2017.
  2. H. Q. Ngo, L.-N. Tran, T. Q. Duong, M. Matthaiou, and E. G. Larsson, “On the total energy efficiency of cell-free massive MIMO,” IEEE Transactions on Green Communications and Networking, vol. 2, no. 1, pp. 25–39, 2018.
  3. H. Yang and T. L. Marzetta, “Energy efficiency of massive MIMO: Cell-free vs. cellular,” in Proc. of IEEE 87th Vehicular Technology Conference (VTC Spring), pp. 1–5, 2018.
  4. H. A. Ammar, R. Adve, S. Shahbazpanahi, G. Boudreau, and K. V. Srinivas, “User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions,” IEEE Communications Surveys & Tutorials, vol. 24, no. 1, pp. 611–652, 2022.
  5. H. Yin, D. Gesbert, and L. Cottatellucci, “Dealing with interference in distributed large-scale MIMO systems: A statistical approach,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 942–953, 2014.
  6. Z. Chen and E. Björnson, “Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry,” IEEE Transactions on Communications, vol. 66, no. 11, pp. 5205–5219, 2018.
  7. R. Gholami, L. Cottatellucci, and D. Slock, “Favorable propagation and linear multiuser detection for distributed antenna systems,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2020.
  8. R. Gholami, L. Cottatellucci, and D. Slock, “Channel models, favorable propagation and MultiStage linear detection in cell-free massive MIMO,” in Proc. of IEEE International Symposium on Information Theory (ISIT), 2020.
  9. T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, pp. 3590–3600, Nov. 2010.
  10. H. Q. Ngo and E. G. Larsson, “EVD-based channel estimation in multicell multiuser MIMO systems with very large antenna arrays,” in Proc. of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2012.
  11. H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264–273, 2013.
  12. L. Cottatellucci, R. R. Müller, and M. Vehkapera, “Analysis of pilot decontamination based on power control,” in Proc. of IEEE 77th Vehicular Technology Conference (VTC-Spring), 2013.
  13. R. R. Müller, L. Cottatellucci, and M. Vehkapera, “Blind pilot decontamination,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 773–786, 2014.
  14. H. Yin, L. Cottatellucci, D. Gesbert, R. R. Müller, and G. He, “Robust pilot decontamination based on joint angle and power domain discrimination,” IEEE Transactions on Signal Processing, vol. 64, no. 11, pp. 2990–3003, 2016.
  15. E. Björnson and L. Sanguinetti, “Making cell-free massive MIMO competitive with MMSE processing and centralized implementation,” IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp. 77–90, 2020.
  16. Ö. T. Demir, E. Björnson, and L. Sanguinetti, “Foundations of user-centric cell-free massive mimo,” Foundations and Trends® in Signal Processing, vol. 14, no. 3-4, pp. 162–472, 2021.
  17. H. Wang, A. Kosasih, C.-K. Wen, S. Jin, and W. Hardjawana, “Expectation propagation detector for extra-large scale massive MIMO,” IEEE Transactions on Wireless Communications, vol. 19, no. 3, pp. 2036–2051, 2020.
  18. T. P. Minka, A family of algorithms for approximate Bayesian inference. PhD thesis, Massachusetts Institute of Technology, 2001.
  19. T. P. Minka, “Expectation propagation for approximate Bayesian inference,” in Proc. of 17th Conference on Uncertainty in Artificial Intelligence (UAI), pp. 362–369, 2001.
  20. J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz, “Expectation propagation detection for high-order high-dimensional MIMO systems,” IEEE Transactions on Communications, vol. 62, no. 8, pp. 2840–2849, 2014.
  21. K. Ghavami and M. Naraghi-Pour, “MIMO detection with imperfect channel state information using expectation propagation,” IEEE Transactions on Vehicular Technology, vol. 66, no. 9, pp. 8129–8138, 2017.
  22. K. Ghavami and M. Naraghi-Pour, “Blind channel estimation and symbol detection for multi-cell massive MIMO systems by expectation propagation,” IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 943–954, 2018.
  23. K.-H. Ngo, M. Guillaud, A. Decurninge, S. Yang, and P. Schniter, “Multi-user detection based on expectation propagation for the non-coherent SIMO multiple access channel,” IEEE Transactions on Wireless Communications, vol. 19, no. 9, pp. 6145–6161, 2020.
  24. Z. Zhang, H. Li, Y. Dong, X. Wang, and X. Dai, “Decentralized signal detection via expectation propagation algorithm for uplink massive MIMO systems,” IEEE Transactions on Vehicular Technology, vol. 69, no. 10, pp. 11233–11240, 2020.
  25. Y. Dong, H. Li, C. Gong, X. Wang, and X. Dai, “An enhanced fully decentralized detector for the uplink M-MIMO system,” IEEE Transactions on Vehicular Technology, vol. 71, no. 12, pp. 13030–13042, 2022.
  26. H. Li, Y. Dong, C. Gong, X. Wang, and X. Dai, “Decentralized groupwise expectation propagation detector for uplink massive MU-MIMO systems,” IEEE Internet of Things Journal, vol. 10, no. 6, pp. 5393–5405, 2023.
  27. A. Kosasih, V. Miloslavskaya, W. Hardjawana, V. Andrean, and B. Vucetic, “Improving cell-free massive MIMO detection performance via expectation propagation,” in Proc. of IEEE 94th Vehicular Technology Conference (VTC-Fall), 2021.
  28. H. He, H. Wang, X. Yu, J. Zhang, S. H. Song, and K. B. Letaief, “Distributed expectation propagation detection for cell-free massive MIMO,” in Proc. of IEEE Global Communications Conference (GLOBECOM), 2021.
  29. H. He, X. Yu, J. Zhang, S. H. Song, and K. B. Letaief, “Cell-free massive MIMO detection: A distributed expectation propagation approach,” arXiv, 2023.
  30. K. Ghavami and M. Naraghi-Pour, “Noncoherent SIMO detection by expectation propagation,” in Proc. of IEEE International Conference on Communications (ICC), 2017.
  31. C. Schülke, Statistical physics of linear and bilinear inference problems. PhD thesis, Université Paris Diderot, Sapienza Università di Roma, 2016.
  32. T. Minka, “Divergence measures and message passing,” Technical report MSR-TR-2005-173, 2005.
  33. T. Heskes, M. Opper, W. Wiegerinck, O. Winther, and O. Zoeter, “Approximate inference techniques with expectation constraints,” Journal of Statistical Mechanics: Theory and Experiment, vol. 2005, no. 11, p. P11015, 2005.
  34. C. Candan, “Proper definition and handling of dirac delta functions [lecture notes],” IEEE Signal Processing Magazine, vol. 38, no. 3, pp. 186–203, 2021.
Citations (5)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com