Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Joint Phase-Time Arrays: A Paradigm for Frequency-Dependent Analog Beamforming in 6G (2312.11682v1)

Published 18 Dec 2023 in cs.IT, eess.SP, and math.IT

Abstract: Hybrid beamforming is an attractive solution to build cost-effective and energy-efficient transceivers for millimeter-wave and terahertz systems. However, conventional hybrid beamforming techniques rely on analog components that generate a frequency flat response such as phase-shifters and switches, which limits the flexibility of the achievable beam patterns. As a novel alternative, this paper proposes a new class of hybrid beamforming called Joint phase-time arrays (JPTA), that additionally use true-time delay elements in the analog beamforming to create frequency-dependent analog beams. Using as an example two important frequency-dependent beam behaviors, the numerous benefits of such flexibility are exemplified. Subsequently, the JPTA beamformer design problem to generate any desired beam behavior is formulated and near-optimal algorithms to the problem are proposed. Simulations show that the proposed algorithms can outperform heuristics solutions for JPTA beamformer update. Furthermore, it is shown that JPTA can achieve the two exemplified beam behaviors with one radio-frequency chain, while conventional hybrid beamforming requires the radio-frequency chains to scale with the number of antennas to achieve similar performance. Finally, a wide range of problems to further tap into the potential of JPTA are also listed as future directions.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (53)
  1. F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski, “Five disruptive technology directions for 5G,” IEEE Communications Magazine, vol. 52, no. 2, pp. 74–80, February 2014.
  2. B. Murmann, “ADC performance survey 1997-2018 (ISSCC & VLSI Symposium),” available at: https://web.stanford.edu/~murmann/adcsurvey.html.
  3. X. Zhang, A. Molisch, and S.-Y. Kung, “Variable-phase-shift-based RF-baseband codesign for MIMO antenna selection,” IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091–4103, Nov 2005.
  4. A. F. Molisch, V. V. Ratnam, S. Han, Z. Li, S. L. H. Nguyen, L. Li, and K. Haneda, “Hybrid beamforming for massive MIMO: A survey,” IEEE Communications Magazine, vol. 55, no. 9, pp. 134–141, Sept 2017.
  5. R. W. Heath, N. González-Prelcic, S. Rangan, W. Roh, and A. M. Sayeed, “An overview of signal processing techniques for millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 436–453, April 2016.
  6. A. Alkhateeb, J. Mo, N. Gonzalez-Prelcic, and R. W. Heath, “MIMO precoding and combining solutions for millimeter-wave systems,” IEEE Communications Magazine, vol. 52, no. 12, pp. 122–131, 2014.
  7. P. Sudarshan, N. Mehta, A. Molisch, and J. Zhang, “Channel statistics-based RF pre-processing with antenna selection,” IEEE Transactions on Wireless Communications, vol. 5, no. 12, pp. 3501–3511, December 2006.
  8. O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499–1513, 2014.
  9. A. Liu and V. Lau, “Phase only RF precoding for massive MIMO systems with limited RF chains,” IEEE Transactions on Signal Processing, vol. 62, no. 17, pp. 4505–4515, Sept 2014.
  10. V. V. Ratnam, A. F. Molisch, and H. C. Papadopoulos, “MIMO systems with restricted pre/post-coding – capacity analysis based on coupled doubly correlated Wishart matrices,” IEEE Transactions on Wireless Communications, vol. 15, no. 12, pp. 8537–8550, Dec 2016.
  11. X. Yu, J. C. Shen, J. Zhang, and K. B. Letaief, “Alternating minimization algorithms for hybrid precoding in millimeter wave MIMO systems,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 485–500, April 2016.
  12. A. Molisch and M. Win, “MIMO systems with antenna selection,” IEEE Microwave Magazine, vol. 5, no. 1, pp. 46–56, 2004.
  13. V. V. Ratnam, A. F. Molisch, N. Rabeah, F. Alawwad, and H. Behairy, “Diversity versus training overhead trade-off for low complexity switched transceivers,” in IEEE Global Communications Conference (GLOBECOM), Dec 2016, pp. 1–6.
  14. R. Méndez-Rial, C. Rusu, N. González-Prelcic, A. Alkhateeb, and R. W. Heath, “Hybrid MIMO architectures for millimeter wave communications: Phase shifters or switches?” IEEE Access, vol. 4, pp. 247–267, 2016.
  15. V. V. Ratnam, O. Y. Bursalioglu, H. Papadopoulos, and A. Molisch, “Preprocessor design for hybrid preprocessing with selection in massive MISO systems,” in IEEE International Conference on Communications (ICC), May 2017.
  16. V. Ratnam, A. Molisch, O. Y. Bursalioglu, and H. C. Papadopoulos, “Hybrid beamforming with selection for multi-user massive MIMO systems,” IEEE Transactions on Signal Processing, vol. 66, no. 15, pp. 4105–4120, Aug. 2018.
  17. Y. Zeng, R. Zhang, and Z. N. Chen, “Electromagnetic lens-focusing antenna enabled massive mimo: Performance improvement and cost reduction,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1194–1206, 2014.
  18. Y. Gao, M. Khaliel, F. Zheng, and T. Kaiser, “Rotman lens based hybrid analog–digital beamforming in massive mimo systems: Array architectures, beam selection algorithms and experiments,” IEEE Transactions on Vehicular Technology, vol. 66, no. 10, pp. 9134–9148, 2017.
  19. F. Sohrabi and W. Yu, “Hybrid digital and analog beamforming design for large-scale antenna arrays,” IEEE Journal of Selected Topics in Signal Processing, vol. 10, no. 3, pp. 501–513, April 2016.
  20. S. Han, C.-l. I, Z. Xu, and C. Rowell, “Large-scale antenna systems with hybrid analog and digital beamforming for millimeter wave 5g,” IEEE Communications Magazine, vol. 53, no. 1, pp. 186–194, 2015.
  21. S. Park, A. Alkhateeb, and R. W. Heath, “Dynamic subarrays for hybrid precoding in wideband mmWave MIMO systems,” IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2907–2920, may 2017.
  22. H. Hashemi, T.-s. Chu, and J. Roderick, “Integrated true-time-delay-based ultra-wideband array processing,” IEEE Communications Magazine, vol. 46, no. 9, pp. 162–172, 2008.
  23. R. Rotman, M. Tur, and L. Yaron, “True time delay in phased arrays,” Proceedings of the IEEE, vol. 104, no. 3, pp. 504–518, 2016.
  24. I. Frigyes and A. Seeds, “Optically generated true-time delay in phased-array antennas,” IEEE Transactions on Microwave Theory and Techniques, vol. 43, no. 9, pp. 2378–2386, 1995.
  25. X. Xie, J. Li, F. Yin, K. Xu, and Y. Dai, “RF phase controlled true time delay,” in Optical Fiber Communication Conference.   Optical Society of America, 2021, pp. Th1A–38.
  26. S. Jang, R. Lu, J. Jeong, and M. P. Flynn, “A 1-GHz 16-element four-beam true-time-delay digital beamformer,” IEEE Journal of Solid-State Circuits, vol. 54, no. 5, pp. 1304–1314, 2019.
  27. E. Ghaderi, A. Sivadhasan Ramani, A. A. Rahimi, D. Heo, S. Shekhar, and S. Gupta, “An integrated discrete-time delay-compensating technique for large-array beamformers,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 9, pp. 3296–3306, 2019.
  28. C.-C. Lin, C. Puglisi, E. Ghaderi, S. Mohapatra, D. Heo, S. Gupta, H. Yan, V. Boljanovic, and D. Cabric, “A 4-element 800MHz-BW 29mW true-time-delay spatial signal processor enabling fast beam-training with data communications,” in IEEE European Solid State Circuits Conference (ESSCIRC), 2021, pp. 287–290.
  29. T.-S. Chu and H. Hashemi, “True-time-delay-based multi-beam arrays,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 8, pp. 3072–3082, 2013.
  30. K. Spoof, M. Zahra, V. Unnikrishnan, K. Stadius, M. Kosunen, and J. Ryynänen, “A 0.6–4.0 GHz RF-resampling beamforming receiver with frequency-scaling true-time-delays up to three carrier cycles,” IEEE Solid-State Circuits Letters, vol. 3, pp. 234–237, 2020.
  31. Q. Ma, D. M. Leenaerts, and P. G. Baltus, “Silicon-based true-time-delay phased-array front-ends at ka-band,” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 9, pp. 2942–2952, 2015.
  32. J. Tan and L. Dai, “Delay-phase precoding for thz massive mimo with beam split,” in IEEE Global Communications Conference (GLOBECOM), 2019, pp. 1–6.
  33. L. Dai, J. Tan, Z. Chen, and H. Vincent Poor, “Delay-phase precoding for wideband THz massive MIMO,” IEEE Transactions on Wireless Communications, pp. 1–1, 2022.
  34. L. Yan, C. Han, T. Yang, and J. Yuan, “Dynamic-subarray with fixed-true-time-delay architecture for terahertz wideband hybrid beamforming,” in IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1–6.
  35. S. Liu, X. Wang, H. Huang, C. Zhang, and K. Qiu, “Optical true time delay-based hybrid beamforming for millimeter-wave NOMA-MIMO systems,” in Asia Communications and Photonics Conference.   Optical Society of America, 2021, pp. T4A–91.
  36. H. Yan, V. Boljanovic, and D. Cabric, “Wideband millimeter-wave beam training with true-time-delay array architecture,” in Asilomar Conference on Signals, Systems, and Computers.   IEEE, 2019, pp. 1447–1452.
  37. V. Boljanovic, H. Yan, E. Ghaderi, D. Heo, S. Gupta, and D. Cabric, “Design of millimeter-wave single-shot beam training for true-time-delay array,” in IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2020, pp. 1–5.
  38. L. Zhou and T. Dateki, “True-time-delay-based fast beam training for millimeter-wave communication systems,” in 2021 IEEE 94th Vehicular Technology Conference (VTC2021-Fall), 2021, pp. 1–5.
  39. V. Boljanovic, H. Yan, C.-C. Lin, S. Mohapatra, D. Heo, S. Gupta, and D. Cabric, “Fast beam training with true-time-delay arrays in wideband millimeter-wave systems,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp. 1727–1739, 2021.
  40. V. Boljanovic and D. Cabric, “Compressive estimation of wideband mmW channel using analog true-time-delay array,” in IEEE Workshop on Signal Processing Systems (SiPS), 2021, pp. 170–175.
  41. B. Zhai, Y. Zhu, A. Tang, and X. Wang, “Thzprism: Frequency-based beam spreading for terahertz communication systems,” IEEE Wireless Communications Letters, vol. 9, no. 6, pp. 897–900, 2020.
  42. R. Li, H. Yan, and D. Cabric, “Rainbow-link: Beam-alignment-free and grant-free mmW multiple access using true-time-delay array,” IEEE Journal on Selected Areas in Communications, vol. 40, no. 5, pp. 1692–1705, 2022.
  43. B. Zhai, A. Tang, C. Peng, and X. Wang, “SS-OFDMA: Spatial-spread orthogonal frequency division multiple access for terahertz networks,” IEEE Journal on Selected Areas in Communications, vol. 39, no. 6, pp. 1678–1692, 2021.
  44. H. Ji, Y. Kim, K. Muhammad, C. Tarver, M. Tonnemacher, T. Kim, J. Oh, B. Yu, G. Xu, and J. Lee, “Extending 5G TDD coverage with XDD: Cross division duplex,” IEEE Access, vol. 9, pp. 51 380–51 392, 2021.
  45. P. Skrimponis, S. Dutta, M. Mezzavilla, S. Rangan, S. H. Mirfarshbafan, C. Studer, J. Buckwalter, and M. Rodwell, “Power consumption analysis for mobile mmwave and sub-thz receivers,” in 6G Wireless Summit (6G SUMMIT), 2020, pp. 1–5.
  46. W.-T. Li, Y.-C. Chiang, J.-H. Tsai, H.-Y. Yang, J.-H. Cheng, and T.-W. Huang, “60-GHz 5-bit phase shifter with integrated vga phase-error compensation,” IEEE Transactions on Microwave Theory and Techniques, vol. 61, no. 3, pp. 1224–1235, 2013.
  47. P. Gu, D. Zhao, and X. You, “Analysis and design of a cmos bidirectional passive vector-modulated phase shifter,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 68, no. 4, pp. 1398–1408, 2021.
  48. P. V. Testa, C. Carta, and F. Ellinger, “A 160–190-GHz vector-modulator phase shifter for low-power applications,” IEEE Microwave and Wireless Components Letters, vol. 30, no. 1, pp. 86–89, 2020.
  49. D. Pepe and D. Zito, “Two mm-wave vector modulator active phase shifters with novel iq generator in 28 nm fdsoi cmos,” IEEE Journal of Solid-State Circuits, vol. 52, no. 2, pp. 344–356, 2017.
  50. S. Park and S. Jeon, “A 15–40 GHz cmos true-time delay circuit for uwb multi-antenna systems,” IEEE Microwave and Wireless Components Letters, vol. 23, no. 3, pp. 149–151, 2013.
  51. F. Hu and K. Mouthaan, “A 1–20 GHz 400 ps true-time delay with small delay error in 0.13 µm cmos for broadband phased array antennas,” in IEEE MTT-S International Microwave Symposium, 2015, pp. 1–3.
  52. D. Baltimas and G. M. Rebeiz, “A 25–50 GHz phase change material (pcm) 5-bit true time delay phase shifter in a production SiGe BiCMOS process,” in IEEE MTT-S International Microwave Symposium (IMS), 2021, pp. 435–437.
  53. J.-M. Song and J.-D. Park, “A 5–11 GHz 8-bit precision passive true-time delay in 65-nm CMOS technology,” IEEE Access, vol. 10, pp. 18 456–18 462, 2022.
Citations (16)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com