Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Study of Systematics on the Cosmological Inference of the Hubble Constant from Gravitational Wave Standard Sirens (2312.11627v1)

Published 18 Dec 2023 in astro-ph.CO and gr-qc

Abstract: Gravitational waves (GWs) from compact binary coalescences (CBCs) can constrain the cosmic expansion of the universe. In the absence of an associated electromagnetic counterpart, the spectral sirens method exploits the relation between the detector frame and the source frame masses to jointly infer the parameters of the mass distribution of black holes (BH) and the cosmic expansion parameter $H_0$. This technique relies on the choice of the parametrization for the source mass population of BHs observed in binary black holes merger (BBHs). Using astrophysically motivated BBH populations, we study the possible systematic effects affecting the inferred value for $H_0$ when using heuristic mass models like a broken power law, a power law plus peak and a multi-peak distributions. We find that with 2000 detected GW mergers, the resulting $H_0$ obtained with a spectral sirens analysis can be biased up to $3\sigma$. The main sources of this bias come from the failure of the heuristic mass models used so far to account for a possible redshift evolution of the mass distribution and from their inability to model unexpected mass features. We conclude that future dark siren GW cosmology analyses should make use of source mass models able to account for redshift evolution and capable to adjust to unforeseen mass features.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. B. P. Abbott et al. (LIGO Scientific, Virgo), Observation of Gravitational Waves from a Binary Black Hole Merger, Phys. Rev. Lett. 116, 061102 (2016), arXiv:1602.03837 [gr-qc] .
  2. R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2: Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, Phys. Rev. X 11, 021053 (2021a), arXiv:2010.14527 [gr-qc] .
  3. R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-2.1: Deep Extended Catalog of Compact Binary Coalescences Observed by LIGO and Virgo During the First Half of the Third Observing Run, arXiv  (2021b), arXiv:2108.01045 [gr-qc] .
  4. W. L. Freedman, Measurements of the Hubble Constant: Tensions in Perspective, Astrophys. J. 919, 16 (2021), arXiv:2106.15656 [astro-ph.CO] .
  5. J. M. Ezquiaga and D. E. Holz, Spectral Sirens: Cosmology from the Full Mass Distribution of Compact Binaries, Phys. Rev. Lett. 129, 061102 (2022), arXiv:2202.08240 [astro-ph.CO] .
  6. S. R. Taylor, J. R. Gair, and I. Mandel, Hubble without the Hubble: Cosmology using advanced gravitational-wave detectors alone, Phys. Rev. D 85, 023535 (2012), arXiv:1108.5161 [gr-qc] .
  7. D. Wysocki, J. Lange, and R. O’Shaughnessy, Reconstructing phenomenological distributions of compact binaries via gravitational wave observations, Phys. Rev. D 100, 043012 (2019), arXiv:1805.06442 [gr-qc] .
  8. M. Mancarella, E. Genoud-Prachex, and M. Maggiore, Cosmology and modified gravitational wave propagation from binary black hole population models, Phys. Rev. D 105, 064030 (2022), arXiv:2112.05728 [gr-qc] .
  9. S. Mukherjee, The redshift dependence of black hole mass distribution: is it reliable for standard sirens cosmology?, Mon. Not. Roy. Astron. Soc. 515, 5495 (2022), arXiv:2112.10256 [astro-ph.CO] .
  10. R. Gray, Gravitational wave cosmology : measuring the Hubble constant with dark standard sirens, Ph.D. thesis, University of Glasgow (2021).
  11. R. Gray, C. Messenger, and J. Veitch, A pixelated approach to galaxy catalogue incompleteness: improving the dark siren measurement of the Hubble constant, Mon. Not. Roy. Astron. Soc. 512, 1127 (2022), arXiv:2111.04629 [astro-ph.CO] .
  12. J. R. Gair et al., The Hitchhiker’s guide to the galaxy catalog approach for gravitational wave cosmology, arXiv  (2022), arXiv:2212.08694 [gr-qc] .
  13. B. F. Schutz, Determining the Hubble Constant from Gravitational Wave Observations, Nature 323, 310 (1986).
  14. M. Fishbach, D. E. Holz, and W. M. Farr, Does the Black Hole Merger Rate Evolve with Redshift?, Astrophys. J. Lett. 863, L41 (2018), arXiv:1805.10270 [astro-ph.HE] .
  15. P. A. R. Ade et al. (Planck), Planck 2015 results. XIII. Cosmological parameters, Astron. Astrophys. 594, A13 (2016), arXiv:1502.01589 [astro-ph.CO] .
  16. R. Gray et al., Joint cosmological and gravitational-wave population inference using dark sirens and galaxy catalogues, arXiv  (2023), arXiv:2308.02281 [astro-ph.CO] .
  17. P. Madau and M. Dickinson, Cosmic Star Formation History, Ann. Rev. Astron. Astrophys. 52, 415 (2014), arXiv:1403.0007 [astro-ph.CO] .
  18. R. Abbott et al. (LIGO Scientific, Virgo), Population Properties of Compact Objects from the Second LIGO-Virgo Gravitational-Wave Transient Catalog, Astrophys. J. Lett. 913, L7 (2021c), arXiv:2010.14533 [astro-ph.HE] .
  19. C. Talbot and E. Thrane, Measuring the binary black hole mass spectrum with an astrophysically motivated parameterization, Astrophys. J. 856, 173 (2018), arXiv:1801.02699 [astro-ph.HE] .
  20. C. Karathanasis, S. Mukherjee, and S. Mastrogiovanni, Binary black holes population and cosmology in new lights: signature of PISN mass and formation channel in GWTC-3, MNRAS 523, 4539 (2023b), arXiv:2204.13495 [astro-ph.CO] .
  21. M. Spera and M. Mapelli, Very massive stars, pair-instability supernovae and intermediate-mass black holes with the SEVN code, Mon. Not. Roy. Astron. Soc. 470, 4739 (2017), arXiv:1706.06109 [astro-ph.SR] .
  22. D. A. Coulter et al., Swope Supernova Survey 2017a (SSS17a), the Optical Counterpart to a Gravitational Wave Source, Science 358, 1556 (2017), arXiv:1710.05452 [astro-ph.HE] .
  23. M. Mapelli, Formation Channels of Single and Binary Stellar-Mass Black Holes (2021) arXiv:2106.00699 [astro-ph.HE] .
  24. J. Veitch et al., Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library, Phys. Rev. D 91, 042003 (2015), arXiv:1409.7215 [gr-qc] .
  25. H. A. Bethe and G. E. Brown, Evolution of binary compact objects which merge, Astrophys. J. 506, 780 (1998), arXiv:astro-ph/9802084 .
  26. S. Babak et al., Searching for gravitational waves from binary coalescence, Phys. Rev. D 87, 024033 (2013), arXiv:1208.3491 [gr-qc] .
  27. M. Fishbach and D. E. Holz, Picky Partners: The Pairing of Component Masses in Binary Black Hole Mergers, Astrophys. J. Lett. 891, L27 (2020), arXiv:1905.12669 [astro-ph.HE] .
  28. C. Messenger and J. Read, Measuring a cosmological distance-redshift relationship using only gravitational wave observations of binary neutron star coalescences, Phys. Rev. Lett. 108, 091101 (2012), arXiv:1107.5725 [gr-qc] .
  29. S. E. Woosley, Pulsational Pair-Instability Supernovae, Astrophys. J. 836, 244 (2017), arXiv:1608.08939 [astro-ph.HE] .
Citations (6)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com