Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
131 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The NNLO soft function for N-jettiness in hadronic collisions (2312.11626v2)

Published 18 Dec 2023 in hep-ph

Abstract: We compute the N-jettiness soft function in hadronic collisions to next-to-next-to-leading order (NNLO) in the strong-coupling expansion. Our calculation is based on an extension of the SoftSERVE framework to soft functions that involve an arbitrary number of lightlike Wilson lines. We present numerical results for 1-jettiness and 2-jettiness, and illustrate that our formalism carries over to a generic number of jets by calculating a few benchmark points for 3-jettiness. We also perform a detailed analytic study of the asymptotic behaviour of the soft-function coefficients at the edges of phase space, when one of the jets becomes collinear to another jet or beam direction, and comment on previous calculations of the N-jettiness soft function.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (59)
  1. N-Jettiness: An Inclusive Event Shape to Veto Jets. Phys. Rev. Lett., 105:092002, 2010. arXiv:1004.2489, doi:10.1103/PhysRevLett.105.092002.
  2. W𝑊Witalic_W-boson production in association with a jet at next-to-next-to-leading order in perturbative QCD. Phys. Rev. Lett., 115(6):062002, 2015. arXiv:1504.02131, doi:10.1103/PhysRevLett.115.062002.
  3. N-jettiness Subtractions for NNLO QCD Calculations. JHEP, 09:058, 2015. arXiv:1505.04794, doi:10.1007/JHEP09(2015)058.
  4. Drell-Yan production at NNLL’+NNLO matched to parton showers. Phys. Rev. D, 92(9):094020, 2015. arXiv:1508.01475, doi:10.1103/PhysRevD.92.094020.
  5. Identifying Boosted Objects with N-subjettiness. JHEP, 03:015, 2011. arXiv:1011.2268, doi:10.1007/JHEP03(2011)015.
  6. Factorization at the LHC: From PDFs to Initial State Jets. Phys. Rev. D, 81:094035, 2010. arXiv:0910.0467, doi:10.1103/PhysRevD.81.094035.
  7. The Quark Beam Function at NNLL. JHEP, 09:005, 2010. arXiv:1002.2213, doi:10.1007/JHEP09(2010)005.
  8. Higgs Production with a Central Jet Veto at NNLL+NNLO. JHEP, 04:092, 2011. arXiv:1012.4480, doi:10.1007/JHEP04(2011)092.
  9. The Quark Beam Function at Two Loops. JHEP, 04:113, 2014. arXiv:1401.5478, doi:10.1007/JHEP04(2014)113.
  10. The Gluon Beam Function at Two Loops. JHEP, 08:020, 2014. arXiv:1405.1044, doi:10.1007/JHEP08(2014)020.
  11. N𝑁Nitalic_N-jettiness beam functions at N33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTLO. JHEP, 09:143, 2020. arXiv:2006.03056, doi:10.1007/JHEP09(2020)143.
  12. Beam functions for N-jettiness at N33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTLO in perturbative QCD. JHEP, 02:073, 2023. arXiv:2211.05722, doi:10.1007/JHEP02(2023)073.
  13. Shape function effects in B →Xs⁢γ→absentsubscript𝑋𝑠𝛾\rightarrow X_{s}\gamma→ italic_X start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_γ and B→Xu⁢l⁢ν¯→𝐵subscript𝑋𝑢𝑙¯𝜈B\rightarrow X_{u}l\bar{\nu}italic_B → italic_X start_POSTSUBSCRIPT italic_u end_POSTSUBSCRIPT italic_l over¯ start_ARG italic_ν end_ARG decays. Phys. Rev. D, 70:034024, 2004. arXiv:hep-ph/0312109, doi:10.1103/PhysRevD.70.034024.
  14. Factorization and shape function effects in inclusive B meson decays. Nucl. Phys. B, 699:335–386, 2004. arXiv:hep-ph/0402094, doi:10.1016/j.nuclphysb.2004.07.041.
  15. Toward a NNLO calculation of the B¯→Xs⁢γ→¯𝐵subscript𝑋𝑠𝛾\bar{B}\rightarrow X_{s}\gammaover¯ start_ARG italic_B end_ARG → italic_X start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT italic_γ decay rate with a cut on photon energy. II. Two-loop result for the jet function. Phys. Lett. B, 637:251–259, 2006. arXiv:hep-ph/0603140, doi:10.1016/j.physletb.2006.04.046.
  16. Three-Loop Quark Jet Function. Phys. Rev. Lett., 121(7):072003, 2018. arXiv:1804.09722, doi:10.1103/PhysRevLett.121.072003.
  17. Direct photon production with effective field theory. JHEP, 02:040, 2010. arXiv:0911.0681, doi:10.1007/JHEP02(2010)040.
  18. The gluon jet function at two-loop order. Phys. Lett. B, 695:252–258, 2011. arXiv:1008.1936, doi:10.1016/j.physletb.2010.11.036.
  19. Gluon jet function at three loops in QCD. Phys. Rev. D, 98(9):094016, 2018. arXiv:1805.02637, doi:10.1103/PhysRevD.98.094016.
  20. The Soft Function for Exclusive N-Jet Production at Hadron Colliders. Phys. Rev. D, 83:114030, 2011. arXiv:1102.4344, doi:10.1103/PhysRevD.83.114030.
  21. The two-loop hemisphere soft function. Phys. Rev. D, 84:045022, 2011. arXiv:1105.3676, doi:10.1103/PhysRevD.84.045022.
  22. Two-Loop Soft Corrections and Resummation of the Thrust Distribution in the Dijet Region. JHEP, 08:010, 2011. arXiv:1105.4560, doi:10.1007/JHEP08(2011)010.
  23. Non-global Structure of the 𝒪⁢(αs2)𝒪subscriptsuperscript𝛼2𝑠\mathcal{O}({\alpha}^{2}_{s})caligraphic_O ( italic_α start_POSTSUPERSCRIPT 2 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ) Dijet Soft Function. JHEP, 08:054, 2011. [Erratum: JHEP 10, 101 (2017)]. arXiv:1105.4628, doi:10.1007/JHEP08(2011)054.
  24. N𝑁Nitalic_N-jettiness soft function at next-to-next-to-leading order. Phys. Rev. D, 91(9):094035, 2015. arXiv:1504.02540, doi:10.1103/PhysRevD.91.094035.
  25. The NNLO QCD soft function for 1-jettiness. Eur. Phys. J. C, 78(3):234, 2018. arXiv:1711.09984, doi:10.1140/epjc/s10052-018-5732-1.
  26. Automated Calculation of N𝑁{N}italic_N-jet Soft Functions. PoS, LL2018:044, 2018. arXiv:1808.07427, doi:10.22323/1.303.0044.
  27. Two-loop N𝑁Nitalic_N-jettiness soft function for p⁢p→2⁢j→𝑝𝑝2𝑗pp\to 2jitalic_p italic_p → 2 italic_j production. Phys. Rev. D, 99(11):114017, 2019. arXiv:1901.10935, doi:10.1103/PhysRevD.99.114017.
  28. Same-hemisphere three-gluon-emission contribution to the zero-jettiness soft function at N3LO QCD. Phys. Rev. D, 106(1):014004, 2022. arXiv:2204.09459, doi:10.1103/PhysRevD.106.014004.
  29. Double-real-virtual and double-virtual-real corrections to the three-loop thrust soft function. JHEP, 22:094, 2020. arXiv:2206.12323, doi:10.1007/JHEP12(2022)094.
  30. Next-to-next-to-leading order N𝑁Nitalic_N-jettiness soft function for t⁢W𝑡𝑊tWitalic_t italic_W production. Phys. Lett. B, 784:397–404, 2018. arXiv:1804.06358, doi:10.1016/j.physletb.2018.08.019.
  31. Zero-jettiness resummation for top-quark pair production at the LHC. JHEP, 01:066, 2022. arXiv:2111.03632, doi:10.1007/JHEP01(2022)066.
  32. Subleading Power Corrections for N-Jettiness Subtractions. Phys. Rev. D, 95(7):074023, 2017. arXiv:1612.00450, doi:10.1103/PhysRevD.95.074023.
  33. Power Corrections in the N-jettiness Subtraction Scheme. JHEP, 03:160, 2017. arXiv:1612.02911, doi:10.1007/JHEP03(2017)160.
  34. N -jettiness subtractions for g⁢g→H→𝑔𝑔𝐻gg\to Hitalic_g italic_g → italic_H at subleading power. Phys. Rev. D, 97(1):014013, 2018. arXiv:1710.03227, doi:10.1103/PhysRevD.97.014013.
  35. Next-to-leading-logarithmic power corrections for N𝑁Nitalic_N-jettiness subtraction in color-singlet production. Phys. Rev. D, 97(7):076006, 2018. arXiv:1802.00456, doi:10.1103/PhysRevD.97.076006.
  36. Power Corrections for N-Jettiness Subtractions at 𝒪⁢(αs)𝒪subscript𝛼𝑠{\cal O}(\alpha_{s})caligraphic_O ( italic_α start_POSTSUBSCRIPT italic_s end_POSTSUBSCRIPT ). JHEP, 12:084, 2018. arXiv:1807.10764, doi:10.1007/JHEP12(2018)084.
  37. Next-to-leading power corrections to V+1𝑉1V+1italic_V + 1 jet production in N𝑁Nitalic_N-jettiness subtraction. Phys. Rev. D, 101(1):016005, 2020. arXiv:1907.12213, doi:10.1103/PhysRevD.101.016005.
  38. Jonathan R. Gaunt. Glauber Gluons and Multiple Parton Interactions. JHEP, 07:110, 2014. arXiv:1405.2080, doi:10.1007/JHEP07(2014)110.
  39. Mao Zeng. Drell-Yan process with jet vetoes: breaking of generalized factorization. JHEP, 10:189, 2015. arXiv:1507.01652, doi:10.1007/JHEP10(2015)189.
  40. An Effective Field Theory for Forward Scattering and Factorization Violation. JHEP, 08:025, 2016. arXiv:1601.04695, doi:10.1007/JHEP08(2016)025.
  41. Factorization Violation and Scale Invariance. Phys. Rev. D, 97(9):096017, 2018. arXiv:1801.01138, doi:10.1103/PhysRevD.97.096017.
  42. No Generalized TMD-Factorization in Hadro-Production of High Transverse Momentum Hadrons. Phys. Rev. D, 81:094006, 2010. arXiv:1001.2977, doi:10.1103/PhysRevD.81.094006.
  43. Two-loop anomalous dimensions of generic dijet soft functions. Nucl. Phys. B, 936:520–541, 2018. arXiv:1805.12414, doi:10.1016/j.nuclphysb.2018.09.026.
  44. Generic dijet soft functions at two-loop order: correlated emissions. JHEP, 07:101, 2019. arXiv:1812.08690, doi:10.1007/JHEP07(2019)101.
  45. Generic dijet soft functions at two-loop order: uncorrelated emissions. JHEP, 09:015, 2020. arXiv:2004.08396, doi:10.1007/JHEP09(2020)015.
  46. M. Beneke and Vladimir A. Smirnov. Asymptotic expansion of Feynman integrals near threshold. Nucl. Phys. B, 522:321–344, 1998. arXiv:hep-ph/9711391, doi:10.1016/S0550-3213(98)00138-2.
  47. A General algorithm for calculating jet cross-sections in NLO QCD. Nucl. Phys. B, 485:291–419, 1997. [Erratum: Nucl.Phys.B 510, 503–504 (1998)]. arXiv:hep-ph/9605323, doi:10.1016/S0550-3213(96)00589-5.
  48. Calculating Soft Radiation at One Loop. JHEP, 03:153, 2016. arXiv:1512.00857, doi:10.1007/JHEP03(2016)153.
  49. Jim G. M. Gatheral. Exponentiation of Eikonal Cross-sections in Nonabelian Gauge Theories. Phys. Lett. B, 133:90–94, 1983. doi:10.1016/0370-2693(83)90112-0.
  50. Non-Abelian eikonal exponentiation. Nucl. Phys. B, 246:231–245, 1984. doi:10.1016/0550-3213(84)90294-3.
  51. The soft gluon current at one loop order. Nucl. Phys. B, 591:435–454, 2000. arXiv:hep-ph/0007142, doi:10.1016/S0550-3213(00)00572-1.
  52. Infrared factorization of tree level QCD amplitudes at the next-to-next-to-leading order and beyond. Nucl. Phys. B, 570:287–325, 2000. arXiv:hep-ph/9908523, doi:10.1016/S0550-3213(99)00778-6.
  53. On the Structure of Infrared Singularities of Gauge-Theory Amplitudes. JHEP, 06:081, 2009. [Erratum: JHEP 11, 024 (2013)]. arXiv:0903.1126, doi:10.1088/1126-6708/2009/06/081.
  54. pySecDec: a toolbox for the numerical evaluation of multi-scale integrals. Comput. Phys. Commun., 222:313–326, 2018. arXiv:1703.09692, doi:10.1016/j.cpc.2017.09.015.
  55. Thomas Hahn. CUBA: A Library for multidimensional numerical integration. Comput. Phys. Commun., 168:78–95, 2005. arXiv:hep-ph/0404043, doi:10.1016/j.cpc.2005.01.010.
  56. Thomas Hahn. Concurrent Cuba. J. Phys. Conf. Ser., 608(1):012066, 2015. arXiv:1408.6373, doi:10.1088/1742-6596/608/1/012066.
  57. N33{}^{3}start_FLOATSUPERSCRIPT 3 end_FLOATSUPERSCRIPTLL resummation of one-jettiness for Z𝑍Zitalic_Z-boson plus jet production at hadron colliders. arXiv:2312.06496.
  58. Automation of Beam and Jet functions at NNLO. SciPost Phys. Proc., 7:021, 2022. arXiv:2110.04804, doi:10.21468/SciPostPhysProc.7.021.
  59. The NNLO quark beam function for jet-veto resummation. JHEP, 01:083, 2023. arXiv:2207.05578, doi:10.1007/JHEP01(2023)083.
Citations (7)

Summary

We haven't generated a summary for this paper yet.