Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Android Malware Detection with Unbiased Confidence Guarantees (2312.11559v1)

Published 17 Dec 2023 in cs.CR and cs.LG

Abstract: The impressive growth of smartphone devices in combination with the rising ubiquity of using mobile platforms for sensitive applications such as Internet banking, have triggered a rapid increase in mobile malware. In recent literature, many studies examine Machine Learning techniques, as the most promising approach for mobile malware detection, without however quantifying the uncertainty involved in their detections. In this paper, we address this problem by proposing a machine learning dynamic analysis approach that provides provably valid confidence guarantees in each malware detection. Moreover the particular guarantees hold for both the malicious and benign classes independently and are unaffected by any bias in the data. The proposed approach is based on a novel machine learning framework, called Conformal Prediction, combined with a random forests classifier. We examine its performance on a large-scale dataset collected by installing 1866 malicious and 4816 benign applications on a real android device. We make this collection of dynamic analysis data available to the research community. The obtained experimental results demonstrate the empirical validity, usefulness and unbiased nature of the outputs produced by the proposed approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
Citations (29)

Summary

We haven't generated a summary for this paper yet.