Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cryptanalysis of PLWE based on zero-trace quadratic roots (2312.11533v1)

Published 15 Dec 2023 in cs.CR

Abstract: We extend two of the attacks on the PLWE problem presented in (Y. Elias, K. E. Lauter, E. Ozman, and K. E. Stange, Ring-LWE Cryptography for the Number Theorist, in Directions in Number Theory, E. E. Eischen, L. Long, R. Pries, and K. E. Stange, eds., vol. 3 of Association for Women in Mathematics Series, Cham, 2016, Springer International Publishing, pp. 271-290) to a ring $R_q=\mathbb{F}_q[x]/(f(x))$ where the irreducible monic polynomial $f(x)\in\mathbb{Z}[x]$ has an irreducible quadratic factor over $\mathbb{F}_q[x]$ of the form $x2+\rho$ with $\rho$ of suitable multiplicative order in $\mathbb{F}_q$. Our attack exploits the fact that the trace of the root is zero and has overwhelming success probability as a function of the number of samples taken as input. An implementation in Maple and some examples of our attack are also provided.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. M. Albrecht and L. Ducas, Lattice Attacks on NTRU and LWE: A History of Refinements. Cryptology ePrint Archive, Report 2021/799, 2021. https://ia.cr/2021/799.
  2. D. Balbás, The Hardness of LWE and Ring-LWE: A Survey. Cryptology ePrint Archive, Report 2021/1358, 2021. https://ia.cr/2021/1358.
  3. Cryptology ePrint Archive, Report 2021/152, 2021. https://ia.cr/2021/152.
  4. I. Blanco-Chacón and L. López-Hernanz, RLWE/PLWE equivalence for the maximal totally real subextension of the 2r⁢p⁢qsuperscript2𝑟𝑝𝑞2^{r}pq2 start_POSTSUPERSCRIPT italic_r end_POSTSUPERSCRIPT italic_p italic_q-th cyclotomic field. arXiv, 2022.
  5. Cryptology ePrint Archive, Paper 2021/053, 2021. https://eprint.iacr.org/2021/053.
  6. Z. Brakerski and N. Döttling, Hardness of LWE on General Entropic Distributions. Cryptology ePrint Archive, Report 2020/119, 2020. https://ia.cr/2020/119.
  7. Cryptology ePrint Archive, Report 2016/240, 2016. https://ia.cr/2016/240.
  8.  , Provably Weak Instances of Ring-LWE Revisited. Cryptology ePrint Archive, Report 2016/239, 2016. https://ia.cr/2016/239.
  9. H. Chen, Subset Attacks on Ring-LWE with Wide Error Distributions I. Cryptology ePrint Archive, Report 2020/440, 2020. https://ia.cr/2020/440.
  10.  , Ring-LWE over two-to-power cyclotomics is not hard. Cryptology ePrint Archive, Report 2021/418, 2021. http://eprint.iacr.org/2021/418.
  11. Cryptology ePrint Archive, Report 2020/539, 2020. https://ia.cr/2020/539.
  12. Cryptology ePrint Archive, Report 2021/277, 2021. https://eprint.iacr.org/2021/277.
  13.  , RLWE and PLWE over cyclotomic fields are not equivalent. arXiv, 2022.
  14. L. Eldar and S. Hallgren, An efficient quantum algorithm for lattice problems achieving subexponential approximation factor. arXiv, 2022.
  15. Cryptology ePrint Archive, Report 2020/515, 2020. https://ia.cr/2020/515.
  16. S. Halevi and V. Shoup, Design and implementation of HElib: a homomorphic encryption library. Cryptology ePrint Archive, Paper 2020/1481, 2020. https://eprint.iacr.org/2020/1481.
  17. Cryptology ePrint Archive, Report 2020/1238, 2020. https://ia.cr/2020/1238.
  18. arXiv, 2016.
  19. Cryptology ePrint Archive, Report 2019/878, 2019. https://ia.cr/2019/878.
  20. Publisher Copyright: © 2017 ACM. Copyright: Copyright 2018 Elsevier B.V., All rights reserved.; 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017 ; Conference date: 19-06-2017 Through 23-06-2017.
  21. Cryptology ePrint Archive, Paper 2019/435, 2019. https://eprint.iacr.org/2019/435.
  22. Cryptology ePrint Archive, Paper 2019/1343, 2019. https://eprint.iacr.org/2019/1343.
  23. Art. no. 34.
  24. P. Sarkar and S. Singha, Classical Reduction of Gap SVP to LWE: A Concrete Security Analysis. Cryptology ePrint Archive, Report 2020/880, 2020. https://ia.cr/2020/880.
  25. J. Surin and S. Cohney, A Gentle Tutorial for Lattice-Based Cryptanalysis. Cryptology ePrint Archive, Paper 2023/032, 2023. https://eprint.iacr.org/2023/032.
  26. Cryptology ePrint Archive, Paper 2022/935, 2022. https://eprint.iacr.org/2022/935.
Citations (2)

Summary

We haven't generated a summary for this paper yet.