Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trading off regional and overall energy system design flexibility in the net-zero transition (2312.11264v2)

Published 18 Dec 2023 in eess.SY, cs.SY, and math.OC

Abstract: The transition to net-zero emissions in Europe is determined by a patchwork of country-level and EU-wide policy, creating coordination challenges in an interconnected system. We use an optimisation model to map out near-optimal energy system designs for 2050, focussing on the planning flexibility of individual regions while maintaining overall system robustness against different weather years, cost assumptions, and land use limitations. Our results reveal extensive flexibility at a regional level, where only few technologies (solar around the Adriatic and wind on the British Isles and in Germany) cannot be substituted. National policymakers can influence renewable energy export and hydrogen strategies significantly, provided they coordinate this with the remaining European system. However, stronger commitment to solar in Southern Europe and Germany unlocks more design options for Europe overall. These results on regional trade-offs facilitate more meaningful policy discussions which are crucial in the transition to a sustainable energy system.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (44)
  1. Regulation (EU) 2021/1119 of the European Parliament and of the Council of 30 June 2021 establishing the framework for achieving climate neutrality and amending Regulations (EC) No 401/2009 and (EU) 2018/1999 (‘European Climate Law’), June 2021. URL: http://data.europa.eu/eli/reg/2021/1119/oj/eng.
  2. Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. Energy Policy, 144:111647, September 2020. doi:10.1016/j.enpol.2020.111647.
  3. Quantification of an efficiency–sovereignty trade-off in climate policy. Nature, 588(7837):261–266, December 2020. doi:10.1038/s41586-020-2982-5.
  4. Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system. Energy, 160:720–739, October 2018. doi:10.1016/j.energy.2018.06.222.
  5. Bundesministerium für Wirtschaft und Klimaschutz. Fortschreibung der Nationalen Wasserstoffstrategie. Technical report, German Government, Berlin, 2023. URL: https://www.bmwk.de/Redaktion/DE/Wasserstoff/Downloads/Fortschreibung.pdf?__blob=publicationFile&v=4.
  6. Copernicus Climate Change Service (C3S). ERA5 hourly data on single levels from 1940 to present, 2023. doi:10.24381/cds.adbb2d47.
  7. Danish Energy Agency. Technology Data for Generation of Electricity and District Heating, 2016.
  8. Joseph F. DeCarolis. Using modeling to generate alternatives (MGA) to expand our thinking on energy futures. Energy Economics, 33(2):145–152, March 2011. doi:10.1016/j.eneco.2010.05.002.
  9. Department for Energy Security & Net Zero (UK). Natural gas supply and consumption, 2023. URL: https://assets.publishing.service.gov.uk/media/65130c71b23dad000de706d5/ET_4.1_SEP_23.xlsx.
  10. Powering Europe with North Sea offshore wind: The impact of hydrogen investments on grid infrastructure and power prices. Energy, 263:125654, January 2023. doi:10.1016/j.energy.2022.125654.
  11. European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions: A hydrogen strategy for a climate-neutral Europe. Communication COM/2020/301, European Commission, 2020. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0301.
  12. European Commission, Secretariat-General. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions: The European Green Deal. Communication COM/2019/640, European Commission, 2019. URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1576150542719&uri=COM%3A2019%3A640%3AFIN.
  13. Eurostat. Harmonised Indices of Consumer Prices (HICP) - all items, 2023. URL: https://ec.europa.eu/eurostat/databrowser/view/teicp000/default/table?lang=en.
  14. Eurostat. Supply, transformation and consumption of gas, 2023. URL: https://ec.europa.eu/eurostat/databrowser/view/nrg_cb_gas/default/table?lang=en.
  15. German Bundestag. Gesetz zu Sofortmaßnahmen für einen beschleunigten Ausbau der erneuerbaren Energien und weiteren Maßnahmen im Stromsektor, 2022. URL: https://dejure.org/BGBl/2022/BGBl._I_S._1237.
  16. Intersecting near-optimal spaces: European power systems with more resilience to weather variability. Energy Economics, 118:106496, January 2023. doi:10.1016/j.eneco.2022.106496.
  17. ERA5 hourly data on single levels from 1940 to present, 2018. doi:10.24381/cds.adbb2d47.
  18. The role of spatial scale in joint optimisations of generation and transmission for European highly renewable scenarios. In 2017 14th International Conference on the European Energy Market (EEM), pages 1–7, Dresden, Germany, June 2017. IEEE. doi:10.1109/EEM.2017.7982024.
  19. PyPSA-Eur: An open optimisation model of the European transmission system. Energy Strategy Reviews, 22:207–215, November 2018. doi:10.1016/j.esr.2018.08.012.
  20. Centralized and decentral approaches to succeed the 100% energiewende in Germany in the European context – A model-based analysis of generation, network, and storage investments. Energy Policy, 167:113039, August 2022. doi:10.1016/j.enpol.2022.113039.
  21. Impact of different time series aggregation methods on optimal energy system design. Renewable Energy, 117:474–487, March 2018. doi:10.1016/j.renene.2017.10.017.
  22. Europe’s way out: Tools to rapidly eliminate imports of Russian natural gas. Joule, 6(10):2219–2224, October 2022. doi:10.1016/j.joule.2022.09.003.
  23. Policy Decision Support for Renewables Deployment through Spatially Explicit Practically Optimal Alternatives. Joule, 4(10):2185–2207, October 2020. doi:10.1016/j.joule.2020.08.002.
  24. The multi-speed energy transition in Europe: Opportunities and challenges for EU energy security. Energy Strategy Reviews, 26:100415, November 2019. doi:10.1016/j.esr.2019.100415.
  25. Michael Schmela. European Market Outlook for Solar Power 2022-2026. Technical report, SolarPower Europe, 2022. URL: https://www.solarpowereurope.org/press-releases/new-report-reveals-eu-solar-power-soars-by-almost-50-in-2022.
  26. The near-optimal feasible space of a renewable power system model. Electric Power Systems Research, 190:106690, January 2021. doi:10.1016/j.epsr.2020.106690.
  27. Broad Ranges of Investment Configurations for Renewable Power Systems, Robust to Cost Uncertainty and Near-Optimality. iScience, 26(5):106702, April 2023. doi:10.1016/j.isci.2023.106702.
  28. The potential role of a hydrogen network in Europe. Joule, 7(8):1793–1817, August 2023. doi:10.1016/j.joule.2023.06.016.
  29. Which Energy Security Union? An experiment on public preferences for energy union alternatives in 5 western European countries. Energy Policy, 183:113734, December 2023. doi:10.1016/j.enpol.2023.113734.
  30. Olje- og energidepartementet og Klima- og miljødepartementet. Regjeringens hydrogenstrategi - på vei mot lavutslippssamfunnet. Technical Report Y-0127 B, Norwegian Government, 2020.
  31. Land use trade-offs in decarbonization of electricity generation in the American West. Energy and Climate Change, 4:100107, December 2023. doi:10.1016/j.egycc.2023.100107.
  32. Using Modeling All Alternatives to explore 55% decarbonization scenarios of the European electricity sector. iScience, 26(5):106677, May 2023. doi:10.1016/j.isci.2023.106677.
  33. Modeling all alternative solutions for highly renewable energy systems. Energy, 234:121294, November 2021. doi:10.1016/j.energy.2021.121294.
  34. Diversity of options to eliminate fossil fuels and reach carbon neutrality across the entire European energy system. Joule, 6(6):1253–1276, June 2022. doi:10.1016/j.joule.2022.05.009.
  35. Chronological Time-Period Clustering for Optimal Capacity Expansion Planning With Storage. IEEE Transactions on Power Systems, 33(6):7162–7170, November 2018. doi:10.1109/TPWRS.2018.2842093.
  36. Cost-effective options and regional interdependencies of reaching a low-carbon European electricity system in 2035. Energy, 282:128774, November 2023. doi:10.1016/j.energy.2023.128774.
  37. The benefits of cooperation in a highly renewable European electricity network. Energy, 134:469–481, September 2017. doi:10.1016/j.energy.2017.06.004.
  38. Secretary of State for Business, Energy & Industrial Strategy. UK Hydrogen Strategy. Technical report, UK Government, 2021.
  39. Coherent or inconsistent? Assessing energy security and climate policy interaction within the European Union. Energy Research & Social Science, 8:1–12, July 2015. doi:10.1016/j.erss.2015.04.004.
  40. North Sea Energy Islands: Impact on national markets and grids. Energy Policy, 167:112907, August 2022. doi:10.1016/j.enpol.2022.112907.
  41. Trade-Offs between Geographic Scale, Cost, and Infrastructure Requirements for Fully Renewable Electricity in Europe. Joule, 4(9):1929–1948, September 2020. doi:10.1016/j.joule.2020.07.018.
  42. Early decarbonisation of the European energy system pays off. Nature Communications, 11(1):6223, December 2020. doi:10.1038/s41467-020-20015-4.
  43. WindEurope. Wind Energy in Europe: 2022 Statistics and the outlook for 2023-2027, February 2023. URL: https://windeurope.org/intelligence-platform/product/wind-energy-in-europe-2022-statistics-and-the-outlook-for-2023-2027/.
  44. Designing low-carbon power systems for Great Britain in 2050 that are robust to the spatiotemporal and inter-annual variability of weather. Nature Energy, 3(5):395–403, May 2018. doi:10.1038/s41560-018-0128-x.
Citations (1)

Summary

We haven't generated a summary for this paper yet.