Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Collaborative Learning for Annotation-Efficient Volumetric MR Image Segmentation (2312.10978v1)

Published 18 Dec 2023 in eess.IV and cs.CV

Abstract: Background: Deep learning has presented great potential in accurate MR image segmentation when enough labeled data are provided for network optimization. However, manually annotating 3D MR images is tedious and time-consuming, requiring experts with rich domain knowledge and experience. Purpose: To build a deep learning method exploring sparse annotations, namely only a single 2D slice label for each 3D training MR image. Population: 3D MR images of 150 subjects from two publicly available datasets were included. Among them, 50 (1,377 image slices) are for prostate segmentation. The other 100 (8,800 image slices) are for left atrium segmentation. Five-fold cross-validation experiments were carried out utilizing the first dataset. For the second dataset, 80 subjects were used for training and 20 were used for testing. Assessment: A collaborative learning method by integrating the strengths of semi-supervised and self-supervised learning schemes was developed. The method was trained using labeled central slices and unlabeled non-central slices. Segmentation performance on testing set was reported quantitatively and qualitatively. Results: Compared to FS-LCS, MT, UA-MT, DCT-Seg, ICT, and AC-MT, the proposed method achieved a substantial improvement in segmentation accuracy, increasing the mean B-IoU significantly by more than 10.0% for prostate segmentation (proposed method B-IoU: 70.3% vs. ICT B-IoU: 60.3%) and by more than 6.0% for left atrium segmentation (proposed method B-IoU: 66.1% vs. ICT B-IoU: 60.1%).

Citations (1)

Summary

We haven't generated a summary for this paper yet.