Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An appointment with Reproducing Kernel Hilbert Space generated by Generalized Gaussian RBF as $L^2-$measure (2312.10693v1)

Published 17 Dec 2023 in cs.LG and math.FA

Abstract: Gaussian Radial Basis Function (RBF) Kernels are the most-often-employed kernels in artificial intelligence and machine learning routines for providing optimally-best results in contrast to their respective counter-parts. However, a little is known about the application of the Generalized Gaussian Radial Basis Function on various machine learning algorithms namely, kernel regression, support vector machine (SVM) and pattern-recognition via neural networks. The results that are yielded by Generalized Gaussian RBF in the kernel sense outperforms in stark contrast to Gaussian RBF Kernel, Sigmoid Function and ReLU Function. This manuscript demonstrates the application of the Generalized Gaussian RBF in the kernel sense on the aforementioned machine learning routines along with the comparisons against the aforementioned functions as well.

Summary

We haven't generated a summary for this paper yet.