Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

State Estimation for Linear Systems with Quadratic Outputs (2312.10684v1)

Published 17 Dec 2023 in eess.SY and cs.SY

Abstract: This letter deals with the problem of state estimation for a class of systems involving linear dynamics with multiple quadratic output measurements. We propose a systematic approach to immerse the original system into a linear time-varying (LTV) system of a higher dimension. The methodology extends the original system by incorporating a minimum number of auxiliary states, ensuring that the resulting extended system exhibits both linear dynamics and linear output. Consequently, any Kalman-type observer can showcase global state estimation, provided the system is uniformly observable.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (26)
  1. A. Ajami, J.-P. Gauthier, and L. Sacchelli, “Dynamic output stabilization of control systems: An unobservable kinematic drone model,” Automatica, vol. 125, p. 109383, 2021.
  2. J. Back and J. H. Seo, “Immersion of non-linear systems into linear systems up to output injection: Characteristic equation approach,” International Journal of Control, vol. 77, pp. 723–734, 2004.
  3. P. Batista, C. Silvestre, and P. Oliveira, “Single range aided navigation and source localization: Observability and filter design,” Systems & Control Letters, vol. 60, pp. 665 – 673, 2011.
  4. P. Bernard, V. Andrieu, and D. Astolfi, “Observer design for continuous-time dynamical systems,” Annual Reviews in Control, vol. 53, pp. 224–248, 2022.
  5. G. Besançon and A. Ticlea, “An immersion-based observer design for rank-observable nonlinear systems,” IEEE Transactions on Automatic Control, vol. 52, pp. 83–88, 2007.
  6. G. Besançon, G. Bornard, and H. Hammouri, “Observer synthesis for a class of nonlinear control systems,” European Journal of control, vol. 2, no. 3, pp. 176–192, 1996.
  7. A. M. Bloch, N. E. Leonard, and J. E. Marsden, “Controlled lagrangians and the stabilization of mechanical systems. i. the first matching theorem,” IEEE Transactions on automatic control, vol. 45, no. 12, pp. 2253–2270, 2000.
  8. G. Bornard, N. Couenne, and F. Celle, “Regularly persistent observers for bilinear systems,” in New Trends in Nonlinear Control Theory: Proceedings of an International Conference on Nonlinear Systems, Nantes, France, June 13–17, 1988.   Springer, 1989, pp. 130–140.
  9. J. Brewer, “Kronecker products and matrix calculus in system theory,” IEEE Transactions on circuits and systems, vol. 25, no. 9, pp. 772–781, 1978.
  10. G. Ciccarella, M. Dalla Mora, and A. Germani, “A luenberger-like observer for nonlinear systems,” International Journal of Control, vol. 57, no. 3, pp. 537–556, 1993.
  11. D. De Palma, F. Arrichiello, G. Parlangeli, and G. Indiveri, “Underwater localization using single beacon measurements: Observability analysis for a double integrator system,” Ocean Engineering, vol. 142, pp. 650 – 665, 2017.
  12. C. A. Depken, “The observability of systems with linear dynamics and quadratic output,” Ph.D. dissertation, Georgia Institute of Technology,, 1971.
  13. E. Flayac, “Coupled methods of nonlinear estimation and control applicable to terrain-aided navigation,” Ph.D. dissertation, Thése de doctorat dirigée par Jean, Frédéric Mathéematiques appliquées, Université Paris-Saclay, 2019.
  14. M. Fliess and I. Kupka, “A finiteness criterion for nonlinear input–-output differential systems,” SIAM Journal on Control and Optimization, vol. 21, pp. 721–728, 1983.
  15. J.-P. Gauthier, H. Hammouri, and S. Othman, “A simple observer for nonlinear systems applications to bioreactors,” IEEE Transactions on automatic control, vol. 37, no. 6, pp. 875–880, 1992.
  16. T. Hamel and C. Samson, “Position estimation from direction or range measurements,” Automatica, vol. 82, pp. 137 – 144, 2017.
  17. R. Hermann and A. Krener, “Nonlinear controllability and observability,” IEEE Transactions on automatic control, vol. 22, no. 5, pp. 728–740, 1977.
  18. G. Indiveri, D. De Palma, and G. Parlangeli, “Single range localization in 3-d: Observability and robustness issues,” IEEE Transactions on Control Systems Technology, vol. 24, pp. 1853–1860, 2016.
  19. P. Jouan, “Immersion of nonlinear systems into linear systems modulo output injection,” SIAM Journal on Control and Optimization, vol. 41, pp. 1756–1778, 2003.
  20. R. E. Kalman and R. S. Bucy, “New results in linear filtering and prediction theory,” J. Basic Engrg. ASME, Ser. D, vol. 83, pp. 95–108, 1961.
  21. J. M. Montenbruck, S. Zeng, and F. Allgöwer, “Linear systems with quadratic outputs,” in 2017 American Control Conference (ACC), 2017, pp. 1030–1034.
  22. P. Morin, A. Eudes, and G. Scandaroli, “Uniform observability of linear time-varying systems and application to robotics problems,” in International Conference on Geometric Science of Information, 2017, pp. 336–344.
  23. D. Theodosis, S. Berkane, and D. V. Dimarogonas, “State estimation for a class of linear systems with quadratic output,” 24th International Symposium on Mathematical Theory of Networks and Systems MTNS 2020, vol. 54, pp. 261–266, 2021.
  24. J. Tsinias, “Further results on the observer design problem,” Systems & Control Letters, vol. 14, pp. 411 – 418, 1990.
  25. A. Van der Schaft, “Stabilization of hamiltonian systems,” Nonlinear Anal. Theory Methods Applic., vol. 10, no. 10, pp. 1021–1035, 1986.
  26. M. Wang, S. Berkane, and A. Tayebi, “Nonlinear observers design for vision-aided inertial navigation systems,” IEEE Transactions on Automatic Control, vol. 67, pp. 1853–1868, 2021.
Citations (1)

Summary

We haven't generated a summary for this paper yet.