Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

DomainForensics: Exposing Face Forgery across Domains via Bi-directional Adaptation (2312.10680v2)

Published 17 Dec 2023 in cs.CV

Abstract: Recent DeepFake detection methods have shown excellent performance on public datasets but are significantly degraded on new forgeries. Solving this problem is important, as new forgeries emerge daily with the continuously evolving generative techniques. Many efforts have been made for this issue by seeking the commonly existing traces empirically on data level. In this paper, we rethink this problem and propose a new solution from the unsupervised domain adaptation perspective. Our solution, called DomainForensics, aims to transfer the forgery knowledge from known forgeries to new forgeries. Unlike recent efforts, our solution does not focus on data view but on learning strategies of DeepFake detectors to capture the knowledge of new forgeries through the alignment of domain discrepancies. In particular, unlike the general domain adaptation methods which consider the knowledge transfer in the semantic class category, thus having limited application, our approach captures the subtle forgery traces. We describe a new bi-directional adaptation strategy dedicated to capturing the forgery knowledge across domains. Specifically, our strategy considers both forward and backward adaptation, to transfer the forgery knowledge from the source domain to the target domain in forward adaptation and then reverse the adaptation from the target domain to the source domain in backward adaptation. In forward adaptation, we perform supervised training for the DeepFake detector in the source domain and jointly employ adversarial feature adaptation to transfer the ability to detect manipulated faces from known forgeries to new forgeries. In backward adaptation, we further improve the knowledge transfer by coupling adversarial adaptation with self-distillation on new forgeries. This enables the detector to expose new forgery features from unlabeled data and avoid forgetting the known knowledge of known...

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (7)
  1. Qingxuan Lv (5 papers)
  2. Yuezun Li (37 papers)
  3. Junyu Dong (116 papers)
  4. Sheng Chen (133 papers)
  5. Hui Yu (119 papers)
  6. Huiyu Zhou (109 papers)
  7. Shu Zhang (286 papers)
Citations (1)