Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Model Selection via Mean-Field Variational Approximation (2312.10607v1)

Published 17 Dec 2023 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this goal, we study the non-asymptotic properties of MF inference under the Bayesian framework that allows latent variables and model mis-specification. Concretely, we show a Bernstein von-Mises (BvM) theorem for the variational distribution from MF under possible model mis-specification, which implies the distributional convergence of MF variational approximation to a normal distribution centering at the maximal likelihood estimator (within the specified model). Motivated by the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the commonly used Bayesian information criterion (BIC) as sample size tends to infinity. Comparing to BIC, ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due to a better dimension dependence and full incorporation of the prior information. Moreover, we show the geometric convergence of the coordinate ascent variational inference (CAVI) algorithm under the parametric model framework, which provides a practical guidance on how many iterations one typically needs to run when approximating the ELBO. These findings demonstrate that variational inference is capable of providing a computationally efficient alternative to conventional approaches in tasks beyond obtaining point estimates, which is also empirically demonstrated by our extensive numerical experiments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.