Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A geometric realization of the asymptotic affine Hecke algebra (2312.10582v2)

Published 17 Dec 2023 in math.RT and math.AG

Abstract: A key tool for the study of an affine Hecke algebra $\mathcal{H}$ is provided by Springer theory of the Langlands dual group via the realization of $\mathcal{H}$ as equivariant $K$-theory of the Steinberg variety. We prove a similar geometric description for Lusztig's asymptotic affine Hecke algebra $J$ identifying it with the sum of equivariant $K$-groups of the squares of ${\mathbb C}*$-fixed points in the Springer fibers, as conjectured by Qiu and Xi (the same result was also obtained by Oron Popp using different methods). As an application, we give a new geometric proof of Lusztig's parametrization of irreducible representations of $J$. We also reprove Braverman-Kazhdan's spectral description of $J$. As another application, we prove a description of the cocenters of $\mathcal{H}$ and $J$ conjectured by the first author with Braverman, Kazhdan and Varshavsky. The proof is based on a new algebraic description of $J$, which may be of independent interest.

Citations (2)

Summary

We haven't generated a summary for this paper yet.