Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Secret extraction attacks against obfuscated IQP circuits (2312.10156v1)

Published 15 Dec 2023 in quant-ph and cs.CR

Abstract: Quantum computing devices can now perform sampling tasks which, according to complexity-theoretic and numerical evidence, are beyond the reach of classical computers. This raises the question of how one can efficiently verify that a quantum computer operating in this regime works as intended. In 2008, Shepherd and Bremner proposed a protocol in which a verifier constructs a unitary from the comparatively easy-to-implement family of so-called IQP circuits, and challenges a prover to execute it on a quantum computer. The challenge problem is designed to contain an obfuscated secret, which can be turned into a statistical test that accepts samples from a correct quantum implementation. It was conjectured that extracting the secret from the challenge problem is NP-hard, so that the ability to pass the test constitutes strong evidence that the prover possesses a quantum device and that it works as claimed. Unfortunately, about a decade later, Kahanamoku-Meyer found an efficient classical secret extraction attack. Bremner, Cheng, and Ji very recently followed up by constructing a wide-ranging generalization of the original protocol. Their IQP Stabilizer Scheme has been explicitly designed to circumvent the known weakness. They also suggested that the original construction can be made secure by adjusting the problem parameters. In this work, we develop a number of secret extraction attacks which are effective against both new approaches in a wide range of problem parameters. The important problem of finding an efficient and reliable verification protocol for sampling-based proofs of quantum supremacy thus remains open.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (14)
  1. C. Gidney and M. Ekerå, Quantum 5, 433 (2021).
  2. D. Litinski,   (2023), arXiv:2306.08585 .
  3. S. Aaronson and A. Arkhipov, Th. Comp. 9, 143 (2013).
  4. D. Hangleiter and J. Eisert, Rev. Mod. Phys. 95, 035001 (2023), arXiv:2206.04079 .
  5. T. Yamakawa and M. Zhandry,   (2022), arXiv:2204.02063 .
  6. D. Shepherd and M. J. Bremner, Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 465, 1413 (2009).
  7. S. Aaronson, “Recent progress in quantum advantage,”  (2022), talk at the Simons Institute; accessed 23/11/27.
  8. S. Aaronson, “Verifiable quantum supremacy: What I hope will be done,”  (2023), talk at the Simons Institute; accessed 23/11/27.
  9. G. D. Kahanamoku-Meyer, Quantum 7, 1107 (2023), arXiv:1912.05547 .
  10. V. F. Kolchin, Random Graphs, Encyclopedia of Mathematics and Its Applications (Cambridge University Press, Cambridge, 1998).
  11. J. A. Wood, Trans. Amer. Math. Soc. 336, 445 (1993).
  12. F. Montealegre-Mora and D. Gross,   (2022), arXiv:2208.01688 .
  13. D. Gross and D. Hangleiter, “De-obfuscate IQP,” https://github.com/goliath-klein/deobfuscate-iqp (2023).
  14. J. Shao, Mathematical Statistics, 2nd ed., Springer Texts in Statistics (Springer, New York, 2003).
Citations (1)

Summary

We haven't generated a summary for this paper yet.