Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Do Text Simplification Systems Preserve Meaning? A Human Evaluation via Reading Comprehension (2312.10126v2)

Published 15 Dec 2023 in cs.CL

Abstract: Automatic text simplification (TS) aims to automate the process of rewriting text to make it easier for people to read. A pre-requisite for TS to be useful is that it should convey information that is consistent with the meaning of the original text. However, current TS evaluation protocols assess system outputs for simplicity and meaning preservation without regard for the document context in which output sentences occur and for how people understand them. In this work, we introduce a human evaluation framework to assess whether simplified texts preserve meaning using reading comprehension questions. With this framework, we conduct a thorough human evaluation of texts by humans and by nine automatic systems. Supervised systems that leverage pre-training knowledge achieve the highest scores on the reading comprehension (RC) tasks amongst the automatic controllable TS systems. However, even the best-performing supervised system struggles with at least 14% of the questions, marking them as "unanswerable'' based on simplified content. We further investigate how existing TS evaluation metrics and automatic question-answering systems approximate the human judgments we obtained.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sweta Agrawal (35 papers)
  2. Marine Carpuat (56 papers)
Citations (2)

Summary

We haven't generated a summary for this paper yet.