Integration of Second-Order Bandstop Filter Into a Dual-Polarized 5G Millimeter-Wave Magneto-Electric Dipole Antenna (2312.09996v1)
Abstract: This communication proposes a dual-wideband differentially fed dual-polarized magnetoelectric (ME) dipole with second-order bandstop filtering for millimeter-wave (mm-Wave) applications at 24.25-29.5 GHz and 37-43.5 GHz. Without disturbing the complementary antenna operation, two resonator types (hairpin and coupled {\lambda}/4 open-/short-circuited stub resonators), are embedded into the wideband ME dipole to create two transmission poles and two zeros for sharp band-edge selectivity. This allows independent manipulation of the transmission poles and zeros and a compact ME dipole size. Across the operating band, the symmetric filtering antenna design has more than 31.6 dB of port-to-port isolation. Measured results show symmetrical E- and H-plane radiation patterns and cross-polarization levels lower than -25.1 dB. The measured gains of the single element and a 2x2 array are 8.3 dBi and 12.5 dBi, respectively. Also, the band rejection reaches 23.7 dB and 21.8 dB for single element and array, respectively.
- T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213–6230, Dec. 2017.
- S. J. Yang, S. F. Yao, R.-Y. Ma, and X. Y. Zhang, “Low-profile dual-wideband dual-polarized antenna for 5G millimeter-wave communications,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 12, pp. 2367–2371, Dec. 2022.
- T. Li and Z. N. Chen, “A dual-band metasurface antenna using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5620–5624, Oct. 2018.
- Y. Zhang and J. Mao, “An overview of the development of antenna-in-package technology for highly integrated wireless devices,” Proc. IEEE, vol. 107, no. 11, pp. 2265–2280, Nov. 2019.
- K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, “A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2×2222\times 22 × 2 beamformer flip-chip unit cell,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1260–1274, May 2018.
- Q. Xue, S. W. Liao, and J. H. Xu, “A differentially-driven dual-polarized magneto-electric dipole antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 425–430, Jan. 2013.
- R. Lian, Z. Wang, Y. Yin, J. Wu, and X. Song, “Design of a low-profile dual-polarized stepped slot antenna array for base station,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 362–365, 2016.
- K. Zhang, Z. H. Jiang, W. Hong, and D. H. Werner, “A low-profile and wideband triple-mode antenna for wireless body area network concurrent on-/off-body communications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1982–1994, Mar. 2020.
- J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4474–4483, July 2019.
- P. A. Dzagbletey and Y.-B. Jung, “Stacked microstrip linear array for millimeter-wave 5G baseband communication,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 780–783, May 2018.
- T. Hong, Z. Zhao, W. Jiang, S. Xia, Y. Liu, and S. Gong, “Dual-band SIW cavity-backed slot array using TM020 and TM120 modes for 5G applications,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3490–3495, May 2019.
- T. Deckmyn, M. Cauwe, D. Vande Ginste, H. Rogier, and S. Agneessens, “Dual-band (28,38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2405–2412, Apr. 2019.
- Y.-X. Sun, D. Wu, X. S. Fang, and N. Yang, “Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 8, pp. 1405–1409, Aug. 2020.
- J. F. Zhang, Y. J. Cheng, Y. R. Ding, and C. X. Bai, “A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 853–860, Feb. 2019.
- G. Xu et al., “Microstrip grid and patch-based dual-band shared-aperture differentially fed array antenna,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 6, pp. 1043–1047, June 2021.
- Y.-X. Sun and K. W. Leung, “Substrate-integrated two-port dual-frequency antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3692–3697, Aug. 2016.
- M. Ferrando-Rocher, J. I. Herranz-Herruzo, A. Valero-Nogueira, and B. Bernardo-Clemente, “Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 7, pp. 1463–1467, July 2019.
- T. Li and Z. N. Chen, “Wideband sidelobe-level reduced Ka𝐾𝑎Kaitalic_K italic_a-band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020.
- B. Feng, X. He, J.-C. Cheng, and C.-Y.-D. Sim, “Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory,” IEEE Access, vol. 8, pp. 21 589–21 601, 2020.
- W. Sun, Y. Li, L. Chang, H. Li, X. Qin, and H. Wang, “Dual-band dual-polarized microstrip antenna array using double-layer gridded patches for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6489–6499, Oct. 2021.
- H.-N. Hu, F.-P. Lai, and Y.-S. Chen, “Dual-band dual-polarized scalable antenna subarray for compact millimeter-wave 5G base stations,” IEEE Access, vol. 8, pp. 129 180–129 192, 2020.
- Z. Siddiqui et al., “Dual-band dual-polarized planar antenna for 5G millimeter-wave antenna-in-package applications,” IEEE Trans. Antennas Propag., vol. 71, no. 4, pp. 2908–2921, Apr. 2023.
- Y. Zhang, W. Yang, Q. Xue, J. Huang, and W. Che, “Broadband dual-polarized differential-fed filtering antenna array for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 1989–1998, Mar. 2022.
- J. Chen, M. Berg, K. Rasilainen, Z. Siddiqui, M. E. Leinonen, and A. Pärssinen, “Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11 277–11 292, Dec. 2022.
- Y. Li and K.-M. Luk, “60-GHz dual-polarized two-dimensional switch-beam wideband antenna array of aperture-coupled magneto-electric dipoles,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 554–563, Feb. 2016.
- X. Gu et al., “Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2975–2984, July 2019.
- C.-T. Chuang, T.-J. Lin, and S.-J. Chung, “A band-notched uwb monopole antenna with high notch-band-edge selectivity,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4492–4499, Oct. 2012.
- H.-Y. Yim and K.-K. Cheng, “Novel dual-band planar resonator and admittance inverter for filter design and applications,” in IEEE MTT-S Int. Microw. Symp. (IMS), Long Beach, CA, USA, June 2005, pp. 2187–2190.
- N.-W. Liu, L. Zhu, W.-W. Choi, and J.-D. Zhang, “A novel differential-fed patch antenna on stepped-impedance resonator with enhanced bandwidth under dual-resonance,” IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4618–4625, Nov. 2016.
- K. Rasilainen, A. Lehtovuori, and V. Viikari, “LTE handset antenna with closely-located radiators, low-band MIMO, and high efficiency,” in 2017 11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017, pp. 3074–3078.