Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Integration of Second-Order Bandstop Filter Into a Dual-Polarized 5G Millimeter-Wave Magneto-Electric Dipole Antenna (2312.09996v1)

Published 15 Dec 2023 in eess.SY and cs.SY

Abstract: This communication proposes a dual-wideband differentially fed dual-polarized magnetoelectric (ME) dipole with second-order bandstop filtering for millimeter-wave (mm-Wave) applications at 24.25-29.5 GHz and 37-43.5 GHz. Without disturbing the complementary antenna operation, two resonator types (hairpin and coupled {\lambda}/4 open-/short-circuited stub resonators), are embedded into the wideband ME dipole to create two transmission poles and two zeros for sharp band-edge selectivity. This allows independent manipulation of the transmission poles and zeros and a compact ME dipole size. Across the operating band, the symmetric filtering antenna design has more than 31.6 dB of port-to-port isolation. Measured results show symmetrical E- and H-plane radiation patterns and cross-polarization levels lower than -25.1 dB. The measured gains of the single element and a 2x2 array are 8.3 dBi and 12.5 dBi, respectively. Also, the band rejection reaches 23.7 dB and 21.8 dB for single element and array, respectively.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (30)
  1. T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models,” IEEE Trans. Antennas Propag., vol. 65, no. 12, pp. 6213–6230, Dec. 2017.
  2. S. J. Yang, S. F. Yao, R.-Y. Ma, and X. Y. Zhang, “Low-profile dual-wideband dual-polarized antenna for 5G millimeter-wave communications,” IEEE Antennas Wireless Propag. Lett., vol. 21, no. 12, pp. 2367–2371, Dec. 2022.
  3. T. Li and Z. N. Chen, “A dual-band metasurface antenna using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 66, no. 10, pp. 5620–5624, Oct. 2018.
  4. Y. Zhang and J. Mao, “An overview of the development of antenna-in-package technology for highly integrated wireless devices,” Proc. IEEE, vol. 107, no. 11, pp. 2265–2280, Nov. 2019.
  5. K. Kibaroglu, M. Sayginer, and G. M. Rebeiz, “A low-cost scalable 32-element 28-GHz phased array transceiver for 5G communication links based on a 2×2222\times 22 × 2 beamformer flip-chip unit cell,” IEEE J. Solid-State Circuits, vol. 53, no. 5, pp. 1260–1274, May 2018.
  6. Q. Xue, S. W. Liao, and J. H. Xu, “A differentially-driven dual-polarized magneto-electric dipole antenna,” IEEE Trans. Antennas Propag., vol. 61, no. 1, pp. 425–430, Jan. 2013.
  7. R. Lian, Z. Wang, Y. Yin, J. Wu, and X. Song, “Design of a low-profile dual-polarized stepped slot antenna array for base station,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 362–365, 2016.
  8. K. Zhang, Z. H. Jiang, W. Hong, and D. H. Werner, “A low-profile and wideband triple-mode antenna for wireless body area network concurrent on-/off-body communications,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1982–1994, Mar. 2020.
  9. J. Yin, Q. Wu, C. Yu, H. Wang, and W. Hong, “Broadband symmetrical E-shaped patch antenna with multimode resonance for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 67, no. 7, pp. 4474–4483, July 2019.
  10. P. A. Dzagbletey and Y.-B. Jung, “Stacked microstrip linear array for millimeter-wave 5G baseband communication,” IEEE Antennas Wireless Propag. Lett., vol. 17, no. 5, pp. 780–783, May 2018.
  11. T. Hong, Z. Zhao, W. Jiang, S. Xia, Y. Liu, and S. Gong, “Dual-band SIW cavity-backed slot array using TM020 and TM120 modes for 5G applications,” IEEE Trans. Antennas Propag., vol. 67, no. 5, pp. 3490–3495, May 2019.
  12. T. Deckmyn, M. Cauwe, D. Vande Ginste, H. Rogier, and S. Agneessens, “Dual-band (28,38) GHz coupled quarter-mode substrate-integrated waveguide antenna array for next-generation wireless systems,” IEEE Trans. Antennas Propag., vol. 67, no. 4, pp. 2405–2412, Apr. 2019.
  13. Y.-X. Sun, D. Wu, X. S. Fang, and N. Yang, “Compact quarter-mode substrate-integrated waveguide dual-frequency millimeter-wave antenna array for 5G applications,” IEEE Antennas Wireless Propag. Lett., vol. 19, no. 8, pp. 1405–1409, Aug. 2020.
  14. J. F. Zhang, Y. J. Cheng, Y. R. Ding, and C. X. Bai, “A dual-band shared-aperture antenna with large frequency ratio, high aperture reuse efficiency, and high channel isolation,” IEEE Trans. Antennas Propag., vol. 67, no. 2, pp. 853–860, Feb. 2019.
  15. G. Xu et al., “Microstrip grid and patch-based dual-band shared-aperture differentially fed array antenna,” IEEE Antennas Wireless Propag. Lett., vol. 20, no. 6, pp. 1043–1047, June 2021.
  16. Y.-X. Sun and K. W. Leung, “Substrate-integrated two-port dual-frequency antenna,” IEEE Trans. Antennas Propag., vol. 64, no. 8, pp. 3692–3697, Aug. 2016.
  17. M. Ferrando-Rocher, J. I. Herranz-Herruzo, A. Valero-Nogueira, and B. Bernardo-Clemente, “Full-metal K-Ka dual-band shared-aperture array antenna fed by combined ridge-groove gap waveguide,” IEEE Antennas Wireless Propag. Lett., vol. 18, no. 7, pp. 1463–1467, July 2019.
  18. T. Li and Z. N. Chen, “Wideband sidelobe-level reduced K⁢a𝐾𝑎Kaitalic_K italic_a-band metasurface antenna array fed by substrate-integrated gap waveguide using characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 68, no. 3, pp. 1356–1365, Mar. 2020.
  19. B. Feng, X. He, J.-C. Cheng, and C.-Y.-D. Sim, “Dual-wideband dual-polarized metasurface antenna array for the 5G millimeter wave communications based on characteristic mode theory,” IEEE Access, vol. 8, pp. 21 589–21 601, 2020.
  20. W. Sun, Y. Li, L. Chang, H. Li, X. Qin, and H. Wang, “Dual-band dual-polarized microstrip antenna array using double-layer gridded patches for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 69, no. 10, pp. 6489–6499, Oct. 2021.
  21. H.-N. Hu, F.-P. Lai, and Y.-S. Chen, “Dual-band dual-polarized scalable antenna subarray for compact millimeter-wave 5G base stations,” IEEE Access, vol. 8, pp. 129 180–129 192, 2020.
  22. Z. Siddiqui et al., “Dual-band dual-polarized planar antenna for 5G millimeter-wave antenna-in-package applications,” IEEE Trans. Antennas Propag., vol. 71, no. 4, pp. 2908–2921, Apr. 2023.
  23. Y. Zhang, W. Yang, Q. Xue, J. Huang, and W. Che, “Broadband dual-polarized differential-fed filtering antenna array for 5G millimeter-wave applications,” IEEE Trans. Antennas Propag., vol. 70, no. 3, pp. 1989–1998, Mar. 2022.
  24. J. Chen, M. Berg, K. Rasilainen, Z. Siddiqui, M. E. Leinonen, and A. Pärssinen, “Broadband cross-slotted patch antenna for 5G millimeter-wave applications based on characteristic mode analysis,” IEEE Trans. Antennas Propag., vol. 70, no. 12, pp. 11 277–11 292, Dec. 2022.
  25. Y. Li and K.-M. Luk, “60-GHz dual-polarized two-dimensional switch-beam wideband antenna array of aperture-coupled magneto-electric dipoles,” IEEE Trans. Antennas Propag., vol. 64, no. 2, pp. 554–563, Feb. 2016.
  26. X. Gu et al., “Development, implementation, and characterization of a 64-element dual-polarized phased-array antenna module for 28-GHz high-speed data communications,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 7, pp. 2975–2984, July 2019.
  27. C.-T. Chuang, T.-J. Lin, and S.-J. Chung, “A band-notched uwb monopole antenna with high notch-band-edge selectivity,” IEEE Trans. Antennas Propag., vol. 60, no. 10, pp. 4492–4499, Oct. 2012.
  28. H.-Y. Yim and K.-K. Cheng, “Novel dual-band planar resonator and admittance inverter for filter design and applications,” in IEEE MTT-S Int. Microw. Symp. (IMS), Long Beach, CA, USA, June 2005, pp. 2187–2190.
  29. N.-W. Liu, L. Zhu, W.-W. Choi, and J.-D. Zhang, “A novel differential-fed patch antenna on stepped-impedance resonator with enhanced bandwidth under dual-resonance,” IEEE Trans. Antennas Propag., vol. 64, no. 11, pp. 4618–4625, Nov. 2016.
  30. K. Rasilainen, A. Lehtovuori, and V. Viikari, “LTE handset antenna with closely-located radiators, low-band MIMO, and high efficiency,” in 2017 11th Eur. Conf. Antennas Propag. (EuCAP), Paris, France, Mar. 2017, pp. 3074–3078.
Citations (2)

Summary

We haven't generated a summary for this paper yet.