Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Set-valued expectiles for ordered data analysis (2312.09930v1)

Published 15 Dec 2023 in math.ST and stat.TH

Abstract: Recently defined expectile regions capture the idea of centrality with respect to a multivariate distribution, but fail to describe the tail behavior while it is not at all clear what should be understood by a tail of a multivariate distribution. Therefore, cone expectile sets are introduced which take into account a vector preorder for the multi-dimensional data points. This provides a way of describing and clustering a multivariate distribution/data cloud with respect to an order relation. Fundamental properties of cone expectiles including dual representations of both expectile regions and cone expectile sets are established. It is shown that set-valued sublinear risk measures can be constructed from cone expectile sets in the same way as in the univariate case. Inverse functions of cone expectiles are defined which should be considered as rank functions rather than depth functions. Finally, expectile orders for random vectors are introduced and characterized via expectile rank functions.

Citations (1)

Summary

We haven't generated a summary for this paper yet.