Propagation and lensing of gravitational waves in Palatini $f(\hat R)$ gravity (2312.09908v2)
Abstract: Accelerated expansion of the Universe prompted searches of modified gravity theory beyond general relativity, instead of adding a mysterious dark energy component with exotic physical properties. One such alternative gravity approach is metric-affine Palatini $f(\hat{R})$ theory. By now routine gravitational wave detections have opened a promising avenue of searching for modified gravity effects. Future expected cases of strong lensing of gravitational waves will enhance this opportunity further. In this paper, we present a systematic study of the propagation and gravitational lensing of gravitational waves in Palatini $f(\hat R)$ gravity and compare it with general relativity. Using the WKB approximation we explore the geometric-optical limit of lensing and derive the corrections to the measured luminosity distance of the gravitational source. In addition, we study the lensing by the Singular Isothermal Sphere lens model and show that Palatini $f(\hat{R})$ modifies the lensing potential and hence the deflection angle. Then we show that the lens model and chosen theory of gravity influences the rotation of the gravitational wave polarization plane through the deflection angle. To be more specific we discuss the $f(\hat R)=\hat R+\alpha \hat R2$ gravity theory and find that the modifications comparing to general relativity are negligible if the upper bound of $\alpha \sim 10{9} \, $m$2$ suggested in the literature is adopted. However, this bound is not firmly established and can be updated in the future. Therefore, the results we obtained could be valuable for further metric-affine gravity vs. general relativity tests involving lensing of gravitational waves and comparison of luminosity distances measured from electromagnetic and gravitational wave sources.
- J. Sakstein and B. Jain, “Implications of the Neutron Star Merger GW170817 for Cosmological Scalar-Tensor Theories,” Phys. Rev. Lett. 119 (2017) no. 25, 251303, arXiv:1710.05893 [astro-ph.CO].
- J. M. Ezquiaga and M. Zumalacárregui, “Dark Energy After GW170817: Dead Ends and the Road Ahead,” Phys. Rev. Lett. 119 (2017) no. 25, 251304, arXiv:1710.05901 [astro-ph.CO].
- T. Baker, E. Bellini, P. G. Ferreira, M. Lagos, J. Noller, and I. Sawicki, “Strong constraints on cosmological gravity from GW170817 and GRB 170817A,” Phys. Rev. Lett. 119 (2017) no. 25, 251301, arXiv:1710.06394 [astro-ph.CO].
- Astronomy and Astrophysics Library. Springer, 1992.
- O. A. Hannuksela, K. Haris, K. K. Y. Ng, S. Kumar, A. K. Mehta, D. Keitel, T. G. F. Li, and P. Ajith, “Search for gravitational lensing signatures in LIGO-Virgo binary black hole events,” Astrophys. J. Lett. 874 (2019) no. 1, L2, arXiv:1901.02674 [gr-qc].
- M. Sereno, P. Jetzer, A. Sesana, and M. Volonteri, “Cosmography with strong lensing of LISA gravitational wave sources,” Mon. Not. Roy. Astron. Soc. 415 (2011) 2773, arXiv:1104.1977 [astro-ph.CO].
- S. Cao, J. Qi, Z. Cao, M. Biesiada, J. Li, Y. Pan, and Z.-H. Zhu, “Direct test of the FLRW metric from strongly lensed gravitational wave observations,” Sci. Rep. 9 (2019) no. 1, 11608, arXiv:1910.10365 [astro-ph.CO].
- K. Liao, X.-L. Fan, X.-H. Ding, M. Biesiada, and Z.-H. Zhu, “Precision cosmology from future lensed gravitational wave and electromagnetic signals,” Nature Commun. 8 (2017) no. 1, 1148, arXiv:1703.04151 [astro-ph.CO]. [Erratum: Nature Commun. 8, 2136 (2017)].
- Y. Li, X. Fan, and L. Gou, “Constraining Cosmological Parameters in the FLRW Metric with Lensed GW+EM Signals,” Astrophys. J. 873 (2019) no. 1, 37, arXiv:1901.10638 [astro-ph.CO].
- M. Biesiada and S. Harikumar, “Gravitational Lensing of Continuous Gravitational Waves,” Universe 7 (2021) no. 12, 502, arXiv:2111.05963 [gr-qc].
- M. Grespan and M. Biesiada, “Strong Gravitational Lensing of Gravitational Waves: A Review,” Universe 9 (2023) no. 5, 200.
- K.-H. Lai, O. A. Hannuksela, A. Herrera-Martín, J. M. Diego, T. Broadhurst, and T. G. F. Li, “Discovering intermediate-mass black hole lenses through gravitational wave lensing,” Phys. Rev. D 98 (2018) no. 8, 083005, arXiv:1801.07840 [gr-qc].
- A. K. Meena, “Gravitational lensing of gravitational waves: Probing intermediate mass black holes in galaxy lenses with global minima,” arXiv:2305.02880 [astro-ph.CO].
- J. M. Diego, “Constraining the abundance of primordial black holes with gravitational lensing of gravitational waves at LIGO frequencies,” Phys. Rev. D 101 (2020) no. 12, 123512, arXiv:1911.05736 [astro-ph.CO].
- M. Oguri and R. Takahashi, “Probing Dark Low-mass Halos and Primordial Black Holes with Frequency-dependent Gravitational Lensing Dispersions of Gravitational Waves,” Astrophys. J. 901 (2020) no. 1, 58, arXiv:2007.01936 [astro-ph.CO].
- J. M. Ezquiaga and M. Zumalacárregui, “Gravitational wave lensing beyond general relativity: birefringence, echoes and shadows,” Phys. Rev. D 102 (2020) no. 12, 124048, arXiv:2009.12187 [gr-qc].
- S. Goyal, K. Haris, A. K. Mehta, and P. Ajith, “Testing the nature of gravitational-wave polarizations using strongly lensed signals,” Phys. Rev. D 103 (2021) no. 2, 024038, arXiv:2008.07060 [gr-qc].
- X.-L. Fan, K. Liao, M. Biesiada, A. Piorkowska-Kurpas, and Z.-H. Zhu, “Speed of Gravitational Waves from Strongly Lensed Gravitational Waves and Electromagnetic Signals,” Phys. Rev. Lett. 118 (2017) no. 9, 091102, arXiv:1612.04095 [gr-qc].
- T. E. Collett and D. Bacon, “Testing the speed of gravitational waves over cosmological distances with strong gravitational lensing,” Phys. Rev. Lett. 118 (2017) no. 9, 091101, arXiv:1602.05882 [astro-ph.HE].
- V. K. Sharma, S. Harikumar, M. Grespan, M. Biesiada, and M. M. Verma, “Probing massive gravitons in f(R)𝑓𝑅f(R)italic_f ( italic_R ) with lensed gravitational waves,” arXiv:2310.10346 [gr-qc].
- A. Mishra, N. V. Krishnendu, and A. Ganguly, “Unveiling Microlensing Biases in Testing General Relativity with Gravitational Waves,” arXiv:2311.08446 [gr-qc].
- T. Baker and M. Trodden, “Multimessenger time delays from lensed gravitational waves,” Phys. Rev. D 95 (2017) no. 6, 063512, arXiv:1612.02004 [astro-ph.CO].
- P. A.-S. et al., “Laser interferometer space antenna,” arXiv:1702.00786 [astro-ph.IM].
- S.-S. Li, S. Mao, Y. Zhao, and Y. Lu, “Gravitational lensing of gravitational waves: A statistical perspective,” Mon. Not. Roy. Astron. Soc. 476 (2018) no. 2, 2220–2229, arXiv:1802.05089 [astro-ph.CO].
- M. Biesiada, X. Ding, A. Piorkowska, and Z.-H. Zhu, “Strong gravitational lensing of gravitational waves from double compact binaries - perspectives for the Einstein Telescope,” JCAP 10 (2014) 080, arXiv:1409.8360 [astro-ph.HE].
- L. Yang, X. Ding, M. Biesiada, K. Liao, and Z.-H. Zhu, “How Does the Earth’s Rotation Affect Predictions of Gravitational Wave Strong Lensing Rates?,” Astrophys. J. 874 (2019) no. 2, 139, arXiv:1903.11079 [astro-ph.GA].
- L. Yang, S. Wu, K. Liao, X. Ding, Z. You, Z. Cao, M. Biesiada, and Z.-H. Zhu, “Event rate predictions of strongly lensed gravitational waves with detector networks and more realistic templates,” Mon. Not. Roy. Astron. Soc. 509 (2021) no. 3, 3772–3778, arXiv:2105.07011 [astro-ph.GA].
- A. Piórkowska-Kurpas, S. Hou, M. Biesiada, X. Ding, S. Cao, X. Fan, S. Kawamura, and Z.-H. Zhu, “Inspiraling Double Compact Object Detection and Lensing Rate: Forecast for DECIGO and B-DECIGO,” Astrophys. J. 908 (2021) no. 2, 196, arXiv:2005.08727 [astro-ph.HE].
- T. T. Nakamura and S. Deguchi, “Wave Optics in Gravitational Lensing,” Prog. Theor. Phys. Suppl. 133 (1999) 137–153.
- R. Takahashi and T. Nakamura, “Wave effects in gravitational lensing of gravitational waves from chirping binaries,” Astrophys. J. 595 (2003) 1039–1051, arXiv:astro-ph/0305055.
- C. M. Will, Theory and Experiment in Gravitational Physics. Cambridge University Press, 1993.
- D. M. Eardley, D. L. Lee, A. P. Lightman, R. V. Wagoner, and C. M. Will, “Gravitational-wave observations as a tool for testing relativistic gravity,” Phys. Rev. Lett. 30 (1973) 884–886.
- K. S. Thorne, D. L. Lee, and A. P. Lightman, “Foundations for a Theory of Gravitation Theories,” Phys. Rev. D 7 (1973) 3563–3578.
- S. Hou, X.-L. Fan, and Z.-H. Zhu, “Gravitational Lensing of Gravitational Waves: Rotation of Polarization Plane,” Phys. Rev. D 100 (2019) no. 6, 064028, arXiv:1907.07486 [gr-qc].
- C. Dalang, G. Cusin, and M. Lagos, “Polarization distortions of lensed gravitational waves,” Phys. Rev. D 105 (2022) no. 2, 024005, arXiv:2104.10119 [gr-qc].
- G. Cusin and M. Lagos, “Gravitational wave propagation beyond geometric optics,” Phys. Rev. D 101 (2020) no. 4, 044041, arXiv:1910.13326 [gr-qc].
- G. J. Olmo, “Palatini Approach to Modified Gravity: f(R) Theories and Beyond,” Int. J. Mod. Phys. D 20 (2011) 413–462, arXiv:1101.3864 [gr-qc].
- T. P. Sotiriou, “Curvature scalar instability in f(R) gravity,” Phys. Lett. B 645 (2007) 389–392, arXiv:gr-qc/0611107.
- A. Stachowski, M. Szydłowski, and A. Borowiec, “Starobinsky cosmological model in Palatini formalism,” Eur. Phys. J. C 77 (2017) no. 6, 406, arXiv:1608.03196 [gr-qc].
- M. Szydłowski, A. Stachowski, and A. Borowiec, “Emergence of running dark energy from polynomial f(R) theory in Palatini formalism,” Eur. Phys. J. C 77 (2017) no. 9, 603, arXiv:1707.01948 [gr-qc].
- F. A. Teppa Pannia, S. E. Perez Bergliaffa, and N. Manske, “Cosmography and the redshift drift in Palatini f(ℛ)𝑓ℛf({\cal R})italic_f ( caligraphic_R ) theories,” Eur. Phys. J. C 79 (2019) no. 3, 267, arXiv:1811.08176 [gr-qc].
- P. Pinto, L. Del Vecchio, L. Fatibene, and M. Ferraris, “Extended cosmology in Palatini f(R)-theories,” JCAP 11 (2018) 044, arXiv:1807.00397 [gr-qc].
- S. Camera, S. Capozziello, L. Fatibene, and A. Orizzonte, “The effective equation of state in Palatini f(ℛ)𝑓ℛf({{\mathcal{R}}})italic_f ( caligraphic_R ) cosmology,” Eur. Phys. J. Plus 138 (2023) no. 2, 180, arXiv:2212.13825 [gr-qc].
- I. D. Gialamas, A. Karam, T. D. Pappas, and E. Tomberg, “Implications of Palatini gravity for inflation and beyond,” arXiv:2303.14148 [gr-qc].
- G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, “Minimum main sequence mass in quadratic Palatini f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity,” Phys. Rev. D 100 (2019) no. 4, 044020, arXiv:1906.04629 [gr-qc].
- G. J. Olmo, D. Rubiera-Garcia, and A. Wojnar, “Stellar structure models in modified theories of gravity: Lessons and challenges,” Phys. Rept. 876 (2020) 1–75, arXiv:1912.05202 [gr-qc].
- A. Wojnar, “Early evolutionary tracks of low-mass stellar objects in modified gravity,” Phys. Rev. D 102 (2020) no. 12, 124045, arXiv:2007.13451 [gr-qc].
- A. Wojnar, “Lithium abundance is a gravitational model dependent quantity,” Phys. Rev. D 103 (2021) no. 4, 044037, arXiv:2009.10983 [gr-qc].
- M. Benito and A. Wojnar, “Cooling process of brown dwarfs in Palatini f(R) gravity,” Phys. Rev. D 103 (2021) no. 6, 064032, arXiv:2101.02146 [gr-qc].
- A. Wojnar, “Jupiter and jovian exoplanets in Palatini f(R¯) gravity,” Phys. Rev. D 104 (2021) no. 10, 104058, arXiv:2108.13528 [gr-qc].
- A. Kozak and A. Wojnar, “Metric-affine gravity effects on terrestrial exoplanet profiles,” Phys. Rev. D 104 (2021) no. 8, 084097, arXiv:2106.14219 [gr-qc].
- L. Sarmah, S. Kalita, and A. Wojnar, “Stability criterion for white dwarfs in Palatini f(R) gravity,” Phys. Rev. D 105 (2022) no. 2, 024028, arXiv:2111.08029 [gr-qc].
- S. Kalita, L. Sarmah, and A. Wojnar, “Metric-affine effects in crystallization processes of white dwarfs,” Phys. Rev. D 107 (2023) no. 4, 044072, arXiv:2212.04918 [gr-qc].
- A. Kozak and A. Wojnar, “Planetary seismology as a test of modified gravity proposals,” Phys. Rev. D 108 (2023) no. 4, 044055, arXiv:2303.17213 [gr-qc].
- J. D. Toniato, D. C. Rodrigues, and A. Wojnar, “Palatini f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity in the solar system: post-Newtonian equations of motion and complete PPN parameters,” Phys. Rev. D 101 (2020) no. 6, 064050, arXiv:1912.12234 [gr-qc].
- A. Bonino, S. Camera, L. Fatibene, and A. Orizzonte, “Solar System tests in Brans–Dicke and Palatini f(ℛ)𝑓ℛf({\mathcal{R}})italic_f ( caligraphic_R )-theories,” Eur. Phys. J. Plus 135 (2020) no. 12, 951, arXiv:2011.06303 [gr-qc].
- A. Hernandez-Arboleda, D. C. Rodrigues, J. D. Toniato, and A. Wojnar, “Palatini f(R)𝑓𝑅f(R)italic_f ( italic_R ) gravity tests in the weak field limit: Solar System, seismology and galaxies,” arXiv:2306.04475 [gr-qc].
- M. E. S. Alves, O. D. Miranda, and J. C. N. de Araujo, “Probing the f(R) formalism through gravitational wave polarizations,” Phys. Lett. B 679 (2009) 401–406, arXiv:0908.0861 [gr-qc].
- D. Iosifidis, “The Perfect Hyperfluid of Metric-Affine Gravity: The Foundation,” JCAP 04 (2021) 072, arXiv:2101.07289 [gr-qc].
- T. Koivisto, “Covariant conservation of energy momentum in modified gravities,” Class. Quant. Grav. 23 (2006) 4289–4296, arXiv:gr-qc/0505128.
- M. Ferraris, M. Francaviglia, and I. Volovich, “Universal gravitational equations,” Nuovo Cim. B 108 (1993) 1313–1317.
- M. Ferraris, M. Francaviglia, and I. Volovich, “The Universality of vacuum Einstein equations with cosmological constant,” Class. Quant. Grav. 11 (1994) 1505–1517, arXiv:gr-qc/9303007.
- P. K. Schwartz and D. Giulini, “Post-Newtonian Hamiltonian description of an atom in a weak gravitational field,” Phys. Rev. A 100 (2019) no. 5, 052116, arXiv:1908.06929 [quant-ph].
- G. J. Olmo, “Hydrogen atom in Palatini theories of gravity,” Phys. Rev. D 77 (2008) 084021, arXiv:0802.4038 [gr-qc].
- G. J. Olmo, “Violation of the Equivalence Principle in Modified Theories of Gravity,” Phys. Rev. Lett. 98 (2007) 061101, arXiv:gr-qc/0612002.
- A. Wojnar, “Fermi gas and modified gravity,” Phys. Rev. D 107 (2023) no. 4, 044025, arXiv:2208.04023 [gr-qc].
- J. Naf, P. Jetzer, and M. Sereno, “On Gravitational Waves in Spacetimes with a Nonvanishing Cosmological Constant,” Phys. Rev. D 79 (2009) 024014, arXiv:0810.5426 [astro-ph].
- G. J. Olmo, “The Gravity Lagrangian according to solar system experiments,” Phys. Rev. Lett. 95 (2005) 261102, arXiv:gr-qc/0505101.
- A. Kozak and A. Wojnar, “Earthquakes as probing tools for gravity theories,” arXiv:2308.01784 [gr-qc].
- E. Lope-Oter and A. Wojnar, “Constraining Palatini gravity with GR-independent equations of state,” arXiv:2306.00870 [gr-qc].
- A. Wojnar, “Unveiling Phase Space Modifications: A Clash of Modified Gravity and the Generalized Uncertainty Principle,” arXiv:2311.14066 [gr-qc].
- D. C. Rodrigues, A. Hernandez-Arboleda, and A. Wojnar, “Normalized additional velocity distribution: Testing the radial profile of dark matter halos and MOND,” Phys. Dark Univ. 41 (2023) 101230, arXiv:2204.03762 [astro-ph.GA].
- D. A. Gomes, R. Briffa, A. Kozak, J. Levi Said, M. Saal, and A. Wojnar, “Cosmological constraints of Palatini f(ℛ)𝑓ℛf(\mathcal{R})italic_f ( caligraphic_R ) gravity,” arXiv:2310.17339 [gr-qc].
- J. Beltran Jimenez, L. Heisenberg, and G. J. Olmo, “Tensor perturbations in a general class of Palatini theories,” JCAP 06 (2015) 026, arXiv:1504.00295 [gr-qc].
- J. Beltran Jimenez, L. Heisenberg, G. J. Olmo, and D. Rubiera-Garcia, “On gravitational waves in Born-Infeld inspired non-singular cosmologies,” JCAP 10 (2017) 029, arXiv:1707.08953 [hep-th]. [Erratum: JCAP 08, E01 (2018)].
- J. Beltran Jimenez, L. Heisenberg, G. J. Olmo, and D. Rubiera-Garcia, “Born–Infeld inspired modifications of gravity,” Phys. Rept. 727 (2018) 1–129, arXiv:1704.03351 [gr-qc].
- M. Maggiore, Gravitational Waves. Vol. 1: Theory and Experiments. Oxford University Press, 2007.
- A. Garoffolo, G. Tasinato, C. Carbone, D. Bertacca, and S. Matarrese, “Gravitational waves and geometrical optics in scalar-tensor theories,” JCAP 11 (2020) 040, arXiv:1912.08093 [gr-qc].
- P. Fleury, “Light propagation in inhomogeneous and anisotropic cosmologies,” arXiv:1511.03702 [gr-qc].
- C. Deffayet and K. Menou, “Probing Gravity with Spacetime Sirens,” Astrophys. J. Lett. 668 (2007) L143–L146, arXiv:0709.0003 [astro-ph].
- I. D. Saltas, I. Sawicki, L. Amendola, and M. Kunz, “Anisotropic Stress as a Signature of Nonstandard Propagation of Gravitational Waves,” Phys. Rev. Lett. 113 (2014) no. 19, 191101, arXiv:1406.7139 [astro-ph.CO].
- A. Nishizawa, “Generalized framework for testing gravity with gravitational-wave propagation. I. Formulation,” Phys. Rev. D 97 (2018) no. 10, 104037, arXiv:1710.04825 [gr-qc].
- E. Belgacem, Y. Dirian, S. Foffa, and M. Maggiore, “Gravitational-wave luminosity distance in modified gravity theories,” Phys. Rev. D 97 (2018) no. 10, 104066, arXiv:1712.08108 [astro-ph.CO].
- E. Newman and R. Penrose, “An Approach to gravitational radiation by a method of spin coefficients,” J. Math. Phys. 3 (1962) 566–578.
- S. Chandrasekhar, The mathematical theory of black holes. Clarendon Press, 1985.
- P. Fleury, C. Pitrou, and J.-P. Uzan, “Light propagation in a homogeneous and anisotropic universe,” Phys. Rev. D 91 (2015) no. 4, 043511, arXiv:1410.8473 [gr-qc].
- J. F. Navarro, C. S. Frenk, and S. D. M. White, “A Universal density profile from hierarchical clustering,” Astrophys. J. 490 (1997) 493–508, arXiv:astro-ph/9611107.
- S. Ettori, V. Ghirardini, D. Eckert, E. Pointecouteau, F. Gastaldello, M. Sereno, M. Gaspari, S. Ghizzardi, M. Roncarelli, and M. Rossetti, “Hydrostatic mass profiles in X-COP galaxy clusters,” Astron. Astrophys. 621 (2019) A39, arXiv:1805.00035 [astro-ph.CO].
- 2021.
- 2001.
- T. Treu, “Strong lensing by galaxies,” Annual Review of Astronomy and Astrophysics 48 (2010) no. 1, 87–125. https://doi.org/10.1146/annurev-astro-081309-130924.
- R. Kormann, P. Schneider, and M. Bartelmann, “Isothermal elliptical gravitational lens models,” Astronomy and Astrophysics 284 (1994) 285–299.