Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the compression of shallow non-causal ASR models using knowledge distillation and tied-and-reduced decoder for low-latency on-device speech recognition (2312.09842v1)

Published 15 Dec 2023 in cs.SD and eess.AS

Abstract: Recently, the cascaded two-pass architecture has emerged as a strong contender for on-device automatic speech recognition (ASR). A cascade of causal and shallow non-causal encoders coupled with a shared decoder enables operation in both streaming and look-ahead modes. In this paper, we propose shallow cascaded model by combining various model compression techniques such as knowledge distillation, shared decoder, and tied-and-reduced transducer network in order to reduce the model footprint. The shared decoder is changed into a tied-and-reduced network. The cascaded two-pass model is further compressed using knowledge distillation using a Kullback-Leibler divergence loss on the model posteriors. We demonstrate a 50% reduction in the size of a 41 M parameter cascaded teacher model with no noticeable degradation in ASR accuracy and a 30% reduction in latency

Summary

We haven't generated a summary for this paper yet.