Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discontinuous Galerkin methods for the Vlasov-Stokes' system (2312.09762v1)

Published 15 Dec 2023 in math.NA and cs.NA

Abstract: This paper develops and analyses semi-discrete numerical method for two dimensional Vlasov-Stokes' system with periodic boundary condition. The method is based on coupling of semi-discrete discontinuous Galerkin method for the Vlasov equation with discontinuous Galerkin scheme for the stationary incompressible Stokes' equation. The proposed method is both mass and momentum conservative. Since it is difficult to establish non-negativity of the discrete local density, the generalized discrete Stokes' operator become non-coercive and indefinite and under smallness condition on the discretization parameter, optimal error estimates are established with help of a modified the Stokes' projection to deal with Stokes' part and with the help of a special projection to tackle the Vlasov part. Finally, numerical experiments based on the dG method combined with a splitting algorithm are performed.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (29)
  1. Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39(5):1749–1779, 2001/02.
  2. C. Amrouche and V. Girault. On the existence and regularity of the solution of Stokes problem in arbitrary dimension. Proc. Japan Acad. Ser. A Math. Sci., 67(5):171–175, 1991.
  3. S. Agmon. Lectures on elliptic boundary value problems, volume 369. American Mathematical Soc., 2010.
  4. D. N Arnold. An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal., 19(4):742–760, 1982.
  5. A modeling of biospray for the upper airways. In ESAIM Proc., volume 14, pages 41–47. EDP Sciences, 2005.
  6. Discontinuous Galerkin methods for first-order hyperbolic problems. Math. Models Methods Appl. Sci., 14(12):1893–1903, 2004.
  7. P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.
  8. Superconvergence of the local discontinuous Galerkin method for elliptic problems on cartesian grids. SIAM J. Numer. Anal., 39(1):264–285, 2001.
  9. M. Crouzeix and V. Thomée. The stability in Lpsubscript𝐿𝑝L_{p}italic_L start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT and Wp1subscriptsuperscript𝑊1𝑝W^{1}_{p}italic_W start_POSTSUPERSCRIPT 1 end_POSTSUPERSCRIPT start_POSTSUBSCRIPT italic_p end_POSTSUBSCRIPT of the L2subscript𝐿2L_{2}italic_L start_POSTSUBSCRIPT 2 end_POSTSUBSCRIPT-projection onto finite element function spaces. Math. Comp., 48(178):521–532, 1987.
  10. Discontinuous Galerkin methods for the one-dimensional Vlasov-Poisson system. Kinet. Relat. Models, 4(4):955–989, 2009.
  11. Discontinuous Galerkin methods for the multi-dimensional Vlasov–Poisson problem. Math. Models Methods Appl. Sci., 22(12):1250042, 2012.
  12. D. A. Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012.
  13. A numerical and experimental study of spray dynamics in a simple throat model. Aerosol Science and Technology, 36(1):18–38, 2002.
  14. Asymptotic-preserving schemes for kinetic-fluid modeling of disperse two-phase flows. J. Comput. Phys., 246:145–164, 2013.
  15. Asymptotic-preserving schemes for kinetic–fluid modeling of disperse two-phase flows with variable fluid density. Internat. J. Numer. Methods Fluids, 75(2):81–102, 2014.
  16. Regularity and propagation of moments in some nonlinear Vlasov systems. In Proceedings of the Royal Society of Edinburgh-A-Mathematics, volume 130, pages 1259–1274. Citeseer, 2000.
  17. Y. Giga and H. Sohr. Abstract Lpsuperscript𝐿𝑝L^{p}italic_L start_POSTSUPERSCRIPT italic_p end_POSTSUPERSCRIPT estimates for the cauchy problem with applications to the Navier-Stokes equations in exterior domains. J. Funct. Anal., 102(1):72–94, 1991.
  18. K. Hamdache. Global existence and large time behaviour of solutions for the Vlasov-Stokes equations. Japan J. Indust. Appl. Math., 15(1):51–74, 1998.
  19. Uniqueness of the solution to the 2D Vlasov–Navier–Stokes system. Rev. Mat. Iberoam., 36(1):37–60, 2020.
  20. Periodic vlasov-stokes’ system: Existence and uniqueness of strong solutions. https://arxiv.org/abs/2305.19576.
  21. Discontinuous galerkin methods with generalized numerical fluxes for the vlasov-viscous burgers’ system. J. Sci. Comput., 96(1):7, 2023.
  22. R. M. Höfer. The inertialess limit of particle sedimentation modeled by the Vlasov-Stokes equations. SIAM J. Math. Anal., 50(5):5446–5476, 2018.
  23. P.-E. Jabin and B. Perthame. Notes on mathematical problems on the dynamics of dispersed particles interacting through a fluid. In Modeling in applied sciences, pages 111–147. Springer, 2000.
  24. O. A. Ladyzhenskaya. The mathematical theory of viscous incompressible flow, volume 2. Gordon and Breach New York, 1969.
  25. P. Lesaint and P.-A. Raviart. On a finite element method for solving the neutron transport equation. Publications mathématiques et informatique de Rennes, (S4):1–40, 1974.
  26. D. Schötzau and C. Schwab. Time discretization of parabolic problems by the hp-version of the discontinuous Galerkin finite element method. SIAM J. Numer. Anal., 38(3):837–875, 2000.
  27. V. Thomée. Galerkin finite element methods for parabolic problems, volume 25. Springer Science & Business Media, 2007.
  28. Kumar Vemaganti. Discontinuous Galerkin methods for periodic boundary value problems. Numer. Methods Partial Differ. Equ., 23(3):587–596, 2007.
  29. L. Wahlbin. Superconvergence in Galerkin finite element methods. Springer, 2006.
Citations (1)

Summary

We haven't generated a summary for this paper yet.